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ABSTRACT
Power integrity analysis of in-package and on-chip power
supply needs to consider a large number of ports and han-
dle magnetic coupling that is better represented by suscep-
tance. The existing moment matching methods are not able
to accurately model both large number of ports and suscep-
tance. In this paper, we propose a generalized Second-order
Arnoldi method for reducing Multiple Source Linear Net-
work (SAMSON) with susceptance. We employ a right-
hand-side excitation current vector to replace the port in-
cident matrix such that an MIMO (Multiple-input-multiple-
output) system is transformed into an equivalent superposed
SIMO (Single-input-multiple-output) system to avoid accu-
racy loss in block moment matching, and develop a general-
ized second-order Arnoldi method based orthonormalization
to accurately handle susceptance and non-impulse current
sources. Compared with existing EKS and IEKS approaches
able to consider non-impulse sources but not susceptance,
SAMSON is slightly faster and is more accurate in high fre-
quency range and at dc. With same model order, SAMSON
reduces time domain waveform error by 33X compared to
EKS/IEKS and by 47X compared with the best block mo-
ment matching method applicable to susceptance.

Categories and Subject Descriptors
J.6 [Computer Applications]: COMPUTER-AIDED EN-
GINEERING—Computer-aided design (CAD)

General Terms
Algorithms

1. INTRODUCTION
Package and power grid simulation is an essential part in

modern VLSI design. Typical package and power grid cir-
cuits usually have millions of nodes and large numbers of
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ports. In addition, simulators must be able to handle induc-
tance, especially for the package. Particularly, susceptance
is the preferred model for inductance because susceptance
matrix is usually diagonally dominant and can be sparsi-
fied by a simple truncation method without disrupting the
positive definiteness [1, 2, 3]. In contrast, the partial induc-
tance model results in a large and dense matrix difficult to
sparsify.

There are two kinds of approaches to simulate package and
power grids. One is partition and locality based reduction
and the other approach is model order reduction (MOR).
The former includes [4, 5]. [4] partitions power grids and
maps internal sources to external ports. It needs additional
sparsification which is time-consuming and not accurate. [5]
proposed the localized simulation and design methods based
on the locality of current distribution in most power grids
with C4-bumps. However, the accuracy is limited for low
frequency [5].

This paper focuses on MOR. There are two types of MOR.
The first type, non-RHS (right-hand-side) MOR, performs
MOR directly on the transfer function and then obtains out-
put responses by convolving the reduced transfer function
with the inputs. Non-RHS methods include the first order
ones like PRIMA [6], and the second order ones like ENOR
[7], SMOR [8] and SAPOR (Second-Order Arnoldi Method
for Passive Order Reduction of RCS Circuits)[9, 10] that
are applicable to susceptance. However, those methods are
not accurate when the port number is large. Precisely, if
the circuit has p ports and is reduced to order q, then only
the first bq/pc block moments are matched. In addition, the
runtime increases heavily with the number of ports. There-
fore, non-RHS MOR methods are not efficient for P/G and
package simulation with many ports.

The second type of MOR includes [11], EKS [12] and IEKS
[13]. They perform MOR for linear circuits with RHS cur-
rent sources and can be called RHS MOR. For a different
input source a new reduced model needs to be recalculated.
However, due to the much reduced reduction time, the over-
all runtime is still less than the non-RHS MOR methods
where the convolution with the reduced transfer function is
needed for a new input. Therefore, when dealing with pack-
age and power grid simulation, RHS-MOR is more powerful.
[11] first proposed such kind of RHS MOR method. How-
ever, it is an explicit moment matching method and suffers
from numerical instability. To improve it, EKS [12] em-
ploys incremental orthonormalization algorithm and implic-
itly matches the moments of output vector. It expresses the



PWL source as a sum of delayed ramps in Laplace domain

u(s) =
1

s2

kX

i=0

riexp(−τis) (1)

The expression contains 1/s and 1/s2 terms which become
obstacle for the traditional Krylov subspace methods. EKS
overcomes it by shifting the moments towards right in the
frequency spectrum of u(s). This leads to the loss of accu-
racy, however. IEKS [13] avoids moment shifting by show-
ing that the −1st and −2nd moments of finite-time PWL
sources are zero.

One important limitation of both EKS and IEKS is that
they are in essence first order methods and cannot deal with
RCS circuits with susceptance elements. Directly applying
EKS or IEKS to an RCS circuit will not guarantee passiv-
ity [8]. Moreover, IEKS and EKS have limited accuracy
since they both use incremental orthonormalization proce-
dure and accumulative errors occurs during the procedure.
This is analyzed in details in Section 2. In addition, they
are not accurate to handle arbitrary independent current
sources like

u1(t) = sin(ωt) L(u1) =
ω

s2 + ω2

u2(t) = e−αtcosωt L(u2) =
s + α

(s + α)2 + ω2
(2)

which have 1/si terms (i is a positive integer). EKS needs to
use moment shifting that is error-prone, and IEKS can not
handle 1/si terms. Finally, IEKS cannot perform well in DC
analysis because it can not consider s = 0, corresponding to
the infinite time. DC analysis is closely related to power
dissipation, local voltage spikes and ebbs on the Vdd (or
Gnd) supply lines, and it is very important in power grid
design.

In this paper, we develop an accurate yet efficient gen-
eralized Second-order Arnoldi Method for Reducing Multi-
ple Source Network, namely SAMSON. It is an RHS MOR
method. We theoretically show (see Theorem 3) why SAM-
SON can achieve better accuracy than non-RHS MOR. Sim-
ply speaking, by introducing excitation current vector, we
can transform an MIMO (Multiple-input-multiple-output)
system into an equivalent superposed SIMO (Single-input-
multiple-output) system. Then we can match q moments
of the output instead of the bq/pc block moments for the
original MIMO system. In addition, we develop a general-
ized second-order Arnoldi method based orthonormaliza-
tion procedure to consider all kinds of non-impulse inputs
precisely.

In short summary, SAMSON has the following three ad-
vantages:

1. Compared with block-SAPOR and other non-RHS MOR
methods, it can match more moments of the output.
Hence it is more accurate.

2. Compared with EKS and IEKS, it can deal with all
kinds of RHS sources accurately without performing
moment shifting or incremental orthonormalization al-
gorithm. Therefore, it is numerically more stable, more
efficient and more accurate in the whole frequency
range especially at DC.

3. Compared with EKS and IEKS, it can deal with RCS
circuit with guaranteed passivity.

N the number of circuit nodes
p I/O port number
q the reduced order

Ln×m n × m space in Laplace domain
Rn×m n × m space in Real domain

Table 1: Notations

All these advantages are verified by experiments.
The rest of this paper is organized as follows: In Sec-

tion 2, we review and analyze in details why non-RHS MOR
methods cannot be accurate enough when dealing with large
number of ports while SAMSON can. We also show the nu-
merical error existing in EKS and IEKS. Our new method,
SAMSON, is presented and analyzed in Section 3. Several
numerical experiments on package and power grid simula-
tion are provided in Section 4. Concluding remarks are given
in Section 5.

2. PRELIMINARY

2.1 Limitation of Non-RHS MOR
For simplicity, we use the notation defined in Table 1.

Considering the nodal analysis equations (NA), an RCS lin-
ear circuit can be expressed in Laplace domain as:

(G + sC + Γ/s)V (s) = BJe(s) (3)

ye(s) = LV (s),

where Γ = ET
s L−1Es is the nodal susceptance matrix, and

Es is the adjacent matrix indicating the direction of induc-
tance current flow.

Non-RHS model order reduction methods, like PRIMA
[6] and block SAPOR [10], all assume impulse inputs and
perform reduction on the transfer function, i.e.

H(s) = L(G + sC + Γ/s)−1B (4)

However, when the port number is very close to the num-
ber of nodes, it can only match the first one or two block
moments of the original system, and cannot guarantee high
accuracy. We present the theorems to further illustrate it.
Below we assume the inputs Je are impulses.

Theorem 1. For single-input-single-output (SISO) sys-
tem, when the q columns of projection matrix Q are obtained,
the reduced transfer function ĥ(s) = l̂(Ĝ + sĈ + Γ/s)−1 b̂
matches the first q moments of the original transfer func-
tion h(s) = l(G + sC + Γ/s)−1b, where b ∈ RN×1 [9].

Theorem 2. For multiple-input-multiple-output (MIMO)
system, when the q columns of projection matrix Q are ob-
tained, the reduced transfer function Ĥ(s) = L̂(Ĝ + sĈ +

Γ̂/s)−1B̂ matches the first bq/pc block moments of the orig-
inal transfer function H(s) = L(G + sC + Γ/s)−1B, where
B ∈ RN×p [10].

See [6, 9, 10] for proofs of Theorem 1 and Theorem 2.
Clearly, when there exits large number of ports, the matched
block moment number will decrease. By introducing an ex-
citation current source vector Jex = BJe to replace the in-
cident matrix B, the original MIMO system is transformed
into a superposed SISO system, in which RHS inputs are
directly considered during reduction. This method is based
on following Theorem.

Theorem 3. Assume multiple-input-multiple-output (MIMO)
system, and define the excitation current vector Jex = BJe



where Je ∈ Rp×1 and Jex ∈ RN . When the q columns of
projection matrix Q are obtained, the reduced nodal voltage
variable V̂ (s) = (Ĝ + sĈ + Γ̂/s)−1Ĵex matches the first q
moments of the original V (s) = (G + sC + Γ/s)−1Jex.

Proof. We note that the following two systems have the
same output V (s)

(Gs + sC + Γ/s)V (s) = BJe

(Gs + sC + Γ/s)V (s) = Jex. (5)

Note that Jex can be decomposed into several excitation
components Ji, where each Ji corresponds to the i− th ele-
ment of the Jex vector.

Jex =

pX

i=1

Ji =

2
6666664

J1

0
...
...
0

3
7777775

+ ... +

2
6666664

0
...

Jp

...
0

3
7777775

(6)

Clearly for each Ji, it is equivalent to an SISO system with
b = Ji. Therefore, V̂i(s) matches the first q moments of

Vi(s). With superposition, it is easy to check that
Pp

i=1 V̂i(s)
matches the first q moments of

Pp

i=1 Vi(s).

Theorem 3 is also verified by experiments in Section 4.
This theorem inspires us to develop a model order reduc-
tion approach, namely SAMSON, to directly match the mo-
ment of output voltage response considering multiple RHS
sources.

2.2 Numerical Error of EKS/IEKS
Both EKS and IEKS use the incremental orthonormaliza-

tion algorithm to find the projection basis. This algorithm,
however, is numerically unstable and inaccurate. Mathe-
matically, it is because the ith vector ri depends on all the
vectors from 1st to (i − 1)th. 1

The following vector ri for the orthonormal basis is gen-
erated in [12]:

ri = G−1(

i−1Y

j=0

αjBūi − C(br1 + αi−1

i−1X

j=0

hi−1,j brj)) (7)

For the simplicity of presentation, we denote R = G−1C and
assume that the directions of the orthonormalized basis, bri,
is not significantly influenced by the calculation error. But
their norms are not strictly equal to 1. This assumption is
reasonable because the entries in r̄i are very close to zero and
calculating their norms is error-prone in real cases. If minor
error happens when we calculate α0 = 1

||Rū0||
and we get

α̃0e = α0 + δα0, then from (7), we have r1e = r1 + Rū1δα0

According to our assumption, the orthogonalized vector r̄1

has the same error bound as r1 because the orthogonal pro-
cess is in fact projecting r1 along the direction represented

1In the new orthogonalization procedure to be presented, ri

only depends on ri−1 and therefore is more accurate.

by br0. The result is not related to the norm of br0. Therefore,

α̃1 =
1

||r̄1e||
=

1

||r̄1 + Rū1δα0||

≥
1

||r̄1|| + ||Rū1δα0||

=
1

||r̄1||

1

1 + ||Rū1δα0||
||r̄1||

=
1

||r̄1||
(1 −

||Rū1δα0||

||r̄1||
+ · · · ) (8)

Using a first order approximation, we get α̃1 = α1 + δα1,

where δα1 = ||R||

||r1||2
ū1δα0. In general, we can get the similar

recursive relationship between δαi and δαi−1, δαi−2, · · · , δα0

from (7), which shows how the error is propagated and am-
plified during the course of recursion:

δαi =
||R||

||ri||2
ūi

i−1X

k=0

δαk (9)

3. SAMSON METHOD
In this section, we present our SAMSON method con-

sidering multiple non-impulse sources of an RCS circuit.
First, a generalized excitation current vector is introduced
to transform the MIMO system into an equivalent super-
posed SIMO system with non-impulse sources. Then the
augmented system transformation is employed to enable a
linearization procedure. Therefore, the high order equation
can be linearized into a set of linear equations. Finally, a
projection matrix is found by a generalized second order
Arnoldi method based orthonormalization for the resulted
set of linear equations.

3.1 Generalized Excitation Current Vector
As we have mentioned in Theorem 3, excitation current

vector can be used to transform an MIMO circuit into an
equivalent superposed SISO one. As a result, q moments of
the output can be matched instead of b q

p
c block moments

from a projection matrix of order q.
Recall the definition of excitation current vector provided

in Theorem 3. The generalized excitation current vector Jex

is the product of B and Je, i.e., Jex = BJe(∈ LN ). Each
entry J̄ex(s) in vector Jex indicates the Laplace Transfor-
mation of the current source at one port.

We divide those current sources into two categories: ra-
tional (denoted as R-source) and irrational (denoted as I-
source) according to their Laplace Transformations. Typical
R-sources that are common in physical design include (at-
tenuated) trigonometric sources like sin(ωt), e−αtsin(ωt),
etc. Their Laplace transformations can be expressed as ra-
tional function of s:

J̄ex(s) =
ā0 + ā1s + · · · + ānsn

b̄0 + b̄1s + · · · + b̄nsm
(10)

Typical I-sources that are common in physical design include
impulses, PWL sources, and etc. The Laplace transforma-
tions of those sources cannot be expressed in rational form
like R-sources.

To deal with the I-sources, we first expand them into series
and take the dominant n+1 terms (from s−m to sn−m) as



an approximation.

J̄ex(s) =
nX

i=0

J̄is
i−m (11)

Experiments show that n = 3 can provide a maximum er-
ror less than 10−4. J̄ex(s) now can be viewed as (10) with
b0, b1, · · · , bn−1 all equal to zero. From now on we will only
discuss how to deal with R-sources in the form of (10).

Using (10), J(s) can be written as:

Jex(s) =
1

b0 + b1s + · · · + bnsm

0

B

B

B

B

B

@

Pn1

i=0 a1
i s

i

...Pnp

i=0 ap
i s

i

1

C

C

C

C

C

A

(12)

Because in most applications we are interested in nodal
voltage responses, we can obtain the following system equa-
tion in nodal analysis (NA) form with excitation current
vector.

(sC + G +
1

s
Γ)V (s) = Jex(s)

where V (s)(∈ LN ) is the nodal voltage vector, and G, C
(∈ RN×N ) and Γ = EsSET

s are state matrices;

3.2 Augmented System Transformation
As we can see, the obtained Jex can contain high order

s terms both in nominator and denominator. However, in
order to linearize the system, which will be discussed shortly
after, we require the system to be in such an augmented
form that the si term in LHS should have a correspondence
in si−1 term in RHS. This means that the highest order of
s term in the LHS should be one order higher than that in
the RHS.

Inserting (12) into (13) gives

m+1X

i=0

Υis
iV (s) =

nX

i=0

Θis
i (13)

where Υi and Θi can be directly calculated by expanding
the polynomial product:

Υi = Cbi−1 + Gbi + Γbi+1, Θi = [a1
i , a

2
i , · · · , ap

i ]
T . (14)

We assume that in (13)the highest order of s in LHS is
smaller than that of RHS, and remove this assumption later
on. We first introduce a set of auxiliary variables Vi (i =
1, 2, · · · , n − m) to raise the order of LHS in (13)

V = sV1, V1 = sV2, · · · , Vn−m−1 = sVn−m (15)

Set U = [V, V1, V2, · · · , Vn−m]T as a new state
vector, and we can transform the system equation into the
following augmented format:

TU =

» Pn

i=0 Θis
i

0

–
(16)

where

T =

2
666664

0 0 0 0 . . .
Pm+1

i=0 Υis
i+n−m

I −sI 0 0 . . . 0
0 I −sI 0 . . . 0

0 0
. . .

. . .
. . .

...
0 0 0 I −sI 0

3
777775

(17)
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Figure 1: Diagram for package and power grid co-

simulation.

∈ LN(n−m+1)×N(n−m+1) . The new system is equivalent to
the original one, except that the dimension is increased.

T can be further decomposed according to the descending
order of s:

T = Ψn+1s
n+1 + Ψnsn + · · · + Ψ1s + Ψ0 (18)

where

Ψi =

8
>>>>>>>>><
>>>>>>>>>:

»
0 Υi

0 0

–
, i ≥ 2

»
0 Υ1

0 0

–
+

»
0 0

0 −I

–
, i = 1

»
0 Υ0

0 0

–
+

»
0 0

I 0

–
, i = 0

(19)

Inserting (18) into the new system equation (16), the sys-
tem equation can be rewritten in the descending order of s
term:

n+1X

i=0

Ψis
iU =

» Pn

i=0 Θis
i

0

–
(20)

Note that if the LHS in (13) has a higher order than RHS,
then it is not necessary to raise the order of LHS and (20)
can be directly obtained.

3.3 System Linearization
As we can see, (20) is a high order equation and cannot

be directly used to find the projection matrix. Therefore,
we introduce a set of auxiliary variables to linearize it into
a set of linear equations.

Shifting (20) with s = s0 + σ, we have

n+1X

i=0

Aiσ
iU(σ) =

nX

i=0

Riσ
i (21)

where Ai =
Pn+1

k=i Ci
kΨis

k−i
0 and Ri =

» Pn

k=i
Ci

ksk−i
0 Θi

0

–
.

These coefficient matrices can be directly derived from poly-
nomial expansion in (20).



Again introducing a set of new variables Zi(σ)(i = 1, · · · , n)
satisfying

An+1U + σZn = Rn

σ(AnU − Zn) + Zn−1 = Rn−1

σ(An−1U − Zn−1) + Zn−2 = Rn−2

· · ·

σ(A2U − Z2) + Z1 = R1, (22)

and substituting (22) into (21), we have

(A0 + A1σ)U − σZ1 = R0 (23)

Combing (23) and (22) and noticing that the first N rows
of U is exactly the original state variable V in (13), we get

(I − σA)

»
V
D

–
=

»
q0

p0

–
(24)

where

A =

2
666664

−A−1
0 A1 0 · · · A−1

0

−An−1 0 · · · 0
−An−2 0 · · · 0

...
...

. . .
...

−A2 0 · · · I

3
777775

(25)

and

D =

2
6664

U(N + 1 : (n − m)N)
Zn

...
Z1

3
7775 (26)

If we denote M =
ˆ

A−1
0 R0 Rn Rn−1 · · · R1

˜T
, then

q0 = M(1 : N) and p0 = M(N + 1 : (n + 1)(n − m)N).
By moving (I − σA) to the RHS of (24) and performing

a Maclaurin series expansion, we have
»

V
D

–
= (I + σA + σ2A2 + · · · )

»
q0

p0

–
(27)

Obviously, Ai−1

»
q0

p0

–
is the i-th moment of

»
V
D

–
, q0 and

p0 are actually the first moments of V and R, respectively.
Equation (24) is a linearized form of (21) with RHS in-

dependent of σ. If

»
V
D

–
is the solution to (24), then V

must be the solution to (13). Therefore, the upper part of

the i-th moment

»
V
D

–
, i.e.

ˆ
I 0

˜
Ai−1

»
q0

p0

–
, should

be equal to the i-th moment of the output V. In addition,
note that although the dimension of (24) is augmented due
to introduced high-order auxiliary state variables, (24) can
be efficiently factorized in a recursive fashion because of the
lower triangular structure of A matrix.

3.4 Projection
In order to construct an orthonormal basis qi for the pro-

jection matrix Q, we employ a similar procedure as the
SOAR algorithm presented in [14]. However, there is one im-
portant difference that distinguishes our projection method
with theirs. As we have discussed above, we deal with B
and J matrices together as Jex, so we should also project on
Jex. Once we obtain Q, we perform an orthogonal projec-
tion on the original second-order system (13), and get the
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2 2.02 2.04 2.06 2.08 2.1 2.12

x 10
−5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

Time  (s)

C
u

rr
e

n
t 

(m
A

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−165

−160

−155

−150

−145

Frequency (GHz)

P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

Figure 3: Waveform and spectrum of a typical PWL

current source modeled from FPGA circuits.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
10

150

160

170

180

190

200

210

220

230

240

frequency (Hz)

S AMSON
Original
IEKS
EKS
SAPOR

mV/Hz

Figure 4: Frequency domain response comparison

between SAMSON, IEKS, EKS, SAPOR and origi-

nal with PWL sources. SAMSON is identical to the

original.

reduced-order system in the same form.

(s bC + bG +
1

s
bΓ)bV (s) = bJex(s) (28)

where bC = QT CQ, bG = QT GQ, bΓ = QT ΓQ, bV = QT V and
bJex = QT Jex

Since C, G, Γ are all symmetry positive semi-definite, it
is proved in [7] that the orthogonal projection preserves the
passivity of the original system. We can conclude that the
reduced-order system in (28) has guaranteed passivity, too.

Based on Theorem 3, we can see that SAMSON can match
the first q moments of the output V if the projection matrix
Q has q columns. The essence of SAMSON is to convert
a MIMO circuit into a superposed SIMO one with equiva-
lent output. This is exactly the reason why SAMSON can
outperform the non-RHS MOR methods like PRIMA and
block-SAPOR [10] when there are multiple sources. When
we reduce the circuit to order q, SAMSON can match the
first q moments of the output vector. In contrast, non-RHS
MOR methods can only match the first bq/pc block moments
of the transfer function and accordingly the first bq/pc mo-
ments of the output vector after convolution.

The orthonormalization in SAMSON is numerically more
stable than EKS [12]. First, in SAMSON the new projec-
tion vector is generated only by the orthonormalized previ-
ous one, thus avoiding the error amplification. In contrast,
the projection vector by EKS needs all previous ones. As
discussed in Section II, it introduces accumulated numerical
error. Furthermore, techniques as described in [14] can be
employed to deal with the deflation cases, which further im-
proves the stability of the orthonormalization in SAMSON.

4. NUMERICAL EXPERIMENTS
In this section, we present the numerical experiments to

demonstrate the efficiency and accuracy of the proposed
SAMSON method and compare it with EKS, IEKS and
block-SAPOR. Here we choose block-SAPOR as a repre-
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Figure 5: Time domain response comparison be-

tween SAMSON, IEKS, EKS, SAPOR and the orig-

inal with PWL sources. SAMSON is identical to the

original.

sentative of non-RHS MOR methods because it has higher
accuracy compared with ENOR and SMOR for RCS cir-
cuits [9]. All methods are implemented in MATLAB, and
run on PC with Intel Pentium IV 2.66G CPU and 1G RAM.
We use the extracted RCS meshes to model power plane in
package, RC meshes to model on-chip power/ground grids,
and RC elements to model vias and bumps that connect
off-chip package plane and on-chip power/ground grid. The
examples to be presented are from real industrial applica-
tions. An illustration of package and power grid is shown in
Figure 1. Moreover, we first perform model order reduction
to obtain frequency domain response, then carry out IFFT
(Inverse Fast Fourier Transformation) with 1024 sampling
points to obtain the time-domain response.

4.1 Moment Matching
Theorem 2 and 3 are experimentally verified in Figure

2. We use an example of a package-grid model with 192
nodes and unit impulses are added at 1, 5 , 10 and 20 ports
respectively. Both block-SAPOR and SAMSON use order
q = 20 for the reductions. Clearly shown in Figure 2, block-
SAPOR can only match bq/pc, i.e., 20, 4, 2 and 1 moments
respectively. On the other hand, SAMSON can constantly
match 20 moments, independent of the port number.

4.2 RHS Non-impulse Source Reduction
We first consider the above package model with 50 ports

excited by PWL sources. We reduce the circuit to order
q=80, and measure the output by randomly selecting the
output ports. The PWL current sources are generated from
HSPICE characterization of FPGA circuits. Its magnitude
are different at different ports. An example of such wave-
form and its spectrum (analyzed by Welch method from
MATLAB) are shown in Figure 3 (a) and (b).

The frequency domain response is shown in Figure 4.
Clearly, we can see that SAMSON matches exactly with
the original model. On the other hand, IEKS shows small
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error at lower frequencies. Although worse than IEKS at
both low frequency and high frequency ranges, EKS outper-
forms block-SAPOR significantly. This is because SAPOR
can only match the first block moment of the original sys-
tem in this case. It further illustrates the advantage of RHS
MOR methods.

We also compare the time domain simulation in Figure
5. In finite time period, the input PWL sources vanish and
the output voltage falls to zero. It is clear that the reduced
model by SAMSON exactly matches the original waveform,
which approaches zero much faster than the waveforms for
the other models. This is because as shown in Figure 4,
the output of SAMSON produces the largest high frequency
content than the other methods.

Finally, we use the same circuit above for SAMSON, EKS
and block-SAPOR, but apply attenuated sine waveforms in
Figure 6. The frequency domain and time domain results
are compared in Figure 7 and Figure 8, respectively. We
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did not take IESK into consideration because it cannot han-
dle sources with 1/si (i > 0) terms. From Figure 7 we can
see that SAMSON still matches the original output exactly.
EKS, however, can only match well at dc and low frequency
range, and it has large error in the high frequency range.
This is mainly because EKS can only expand and take the
first several moments of the input sources as an approxima-
tion to match the original system. It neglects the higher
order terms that are important to match high frequency be-
havior.

4.3 Scalability Study
Figure 9 shows the average time domain waveform error of

SAMSON, IEKS, EKS and SAPOR compared to the original
result with respect to the reduction order. We perform re-
ductions on several different sized package-grid circuits with
around 200-70000 nodes. For each circuit 30% nodes have
PWL sources. It is clear that with the increase of order,
SAMSON approaches to the accurate solution faster than
IEKS/EKS and block-SAPOR, where the error of block-
SAPOR is not reduced consistently. At order 40, SAMSON
reduces error by 47X compared with block-SAPOR and by
33X compared with EKS/IEKS methods.

The runtime complexity comparison for above circuits in
Figure 9 is studied in Table 2. Compared with EKS/IEKS,
SAMSON has smaller reduction time due to its higher ac-
curacy, but the time growth has a similar trend. For a RLC
mesh with 11520 nodes and 800 ports, it is 25X faster than
the direct simulation without reduction.

5. CONCLUSIONS AND DISCUSSIONS
In this paper, we have presented a generalized Second-

order Arnoldi method for reducing Multiple SOurce Net-
work, namely SAMSON. It can handle linear RCS circuits
with large numbers of non-impulse current sources. We re-
place the port incident matrix by a generalized right-hand-
side excitation current vector such that an MIMO system
is transformed into an equivalent superposed SIMO system.



# of nodes # of sources Cir Sim Time (s) Reduction + Simulation Time (s)
EKS IEKS SAMSON

192 50 0.18 0.11+0.00 0.09+0.00 0.08+0.00
768 100 106 10.4+0.4 10.2+0.4 7.6+0.4
2048 200 362 20.6+0.8 20.4+0.8 15.8+0.8
11520 800 1164 66.1+3.2 65.2+3.2 47.3+3.2
69380 4000 N/A 384+92 381+92 295+92

Table 2: Comparison of the reduction and simulation time under the same accuracy up to 50GHz.
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Figure 9: Error comparison between SAPOR, IEKS,

EKS and SAMSON with respect to order.

This avoids accuracy loss in block moment matching. In
addition, the system equation with susceptance and gener-
alized right-hand-side excitation current vector, can be lin-
earized into an augmented system by introducing auxiliary
state variables. The augmented system can be reduced by
a generalized second-order Arnoldi method. with improved
accuracy during orthonormalization. Compared with exist-
ing EKS and IEKS approaches, SAMSON is able to con-
sider both non-impulse sources and susceptance. Moreover,
SAMSON is more accurate in both high frequency range
and at dc. With the use of same model order, SAMSON
reduces time domain waveform error by 33X compared to
EKS/IEKS and by 47X compared with SAPOR, the best
block moment matching method applicable to susceptance.
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