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ABSTRACT
In this paper, a Triangularization Based Structure preserving
(TBS) model order reduction is proposed to verify power in-
tegrity of on-chip structured power grid. The power grid is rep-
resented by interconnected basic blocks according to current den-
sity, and basic blocks are further clustered into compact blocks,
each with a unique pole distribution. Then, the system is trans-
formed into a triangular system, where compact blocks are in
its diagonal and the system poles are determined only by the di-
agonal blocks. Finally, projection matrices are constructed and
applied for compact blocks separately. The resulting macromodel
has more matched poles and is more accurate than the one using
flat projection. It is also sparse and enables a two-level anal-
ysis for simulation time reduction. Compared to existing ap-
proaches, TBS in experiments achieves up to 133X and 109X
speedup in macromodel building and simulation respectively, and
reduces waveform error by 33X.

Categories and Subject Descriptors: B.7.2[Hardware]: In-
tegrated circuits – Design aids

General Terms: Algorithms, design

Keywords: Model Order Reduction, PG grid simulation

1. INTRODUCTION
Power integrity verification is an essential part to design nowa-

days on-chip Power/Ground (P/G) grids. Typical P/G grid cir-
cuits usually have millions of nodes and large numbers of ports.
Moreover, due to heterogeneous integration of various modules,
the current density becomes highly non-uniform across the chip.
It is beneficial to design a structured P/G grid that is globally
irregular and locally regular [1] according to the current density.
This results in a P/G circuit model as a heterogeneously struc-
tured network. To ensure power integrity, specialized simulators
for P/G grid are required to efficiently and accurately analyze the
voltage bounce/drop using macromodels. In [2], internal sources
are eliminated to obtain a macromodel with only external ports.
The entire gird is partitioned at and connected by those exter-
nal ports. Because elimination results in a dense macromodel,
[2] applies an additional sparsification that is error-prone and
inefficient. An alternative approach to obtain macromodels is
to use projection based model order reduction (MOR) such as
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PRIMA [3]. The reduced model by PRIMA from a projection
matrix with order q can match n = �q/p� block moments (p is
the port number). Although PRIMA can be implemented by it-
erative path-tracing to efficiently solve tree structured P/G grids
[4], it is inefficient to be applied to mesh structured P/G grids.

The difficulty to apply MOR in P/G grid analysis stems mainly
from following reasons. The cost of Arnoldi orthonormalization
is high for large sized circuits, and the moment matching using
block Krylov subspace is less accurate with an increased number
of ports. In addition, the reduced macromodel is dense, which
slows down simulation when the port number is large [5]. To re-
duce orthonormalization cost for large sized circuits, HiPRIME
[6] applies a partitioned PRIMA to reduce the entire circuit in a
divide-and-conquer fashion. After gluing the reduced state ma-
trices, HiPRIME performs an additional projection to further re-
duced the entire system. However, approaches in [3, 6] use a
flat projection that leads to the loss of the block structure of
the state matrices such as sparsity and hierarchy. The resulting
macromodel, therefore is too dense to be efficiently factorized in
the time/frequency-domain simulation.

In this paper, we propose a triangularization based structure-
preserving model order reduction, in short, TBS method. As
discussed in Section 2, instead of matching block moments of the
transfer function, we directly match moments of output with an
excitation current vector. As a result, the first q moments or
q dominant poles of output can be matched using a projection
matrix with order q, which is independent on port number. In
contrast, the number of matched block moments by PRIMA de-
creases as the port number increases. Hence our approach has
improved accuracy for circuits with large number of ports.

As discussed in Section 3, we represent the original system by
interconnected basic blocks. The basic blocks are obtained from
the current density of locally regular structures in P/G grids. We
reduce each basic block independently with order q, determine its
first q dominant poles, and obtain its corresponding projection
matrix. We then carry out a dominant-pole based clustering to
obtain m clusters of basic blocks, where m is decided by the
nature of structured networks. Each cluster is called as compact
block with a unique pole distribution and a projection matrix
accordingly.

As discussed in Section 4, we further triangulate the system
into a triangular system with m compact blocks in the diago-
nal. The poles of the resulting triangular system are determined
only by m diagonal blocks. Projection matrices are constructed
and applied for compact blocks separately. The reduced trian-
gular system is provable to match mq poles of the original one.
This is the primary contribution of this paper. Because PRIMA
or HiPRIME can only match q poles using the same number of
moments, the reduced system by TBS is more accurate, or TBS
has a higher reduction efficiency under the same error bound. A
recent method BSMOR [7] leverages the subblock structure in
state matrices G and C. After obtaining a flat projection matrix
by PRIMA, BSMOR constructs a new block-diagonal projection
matrix accordingly. Its resulting macromodel matches more poles
than PRIMA does and hence improves accuracy. However, in
BSMOR [7] the system poles are not determined only by those
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blocks in the diagonal part of G and C. As a result, the pole-
matching in BSMOR is not as accurate as that in TBS. In ad-
dition, same as [3], BSMOR is inefficient for large sized circuits
because it orthnormalizes the entire state matrix to obtain the
projection matrix.

Further as discussed in Section 5, because the projection pre-
serves the structure, the obtained macromodel by TBS is intrinsi-
cally sparse, and does not require the LP-sparsification procedure
used in [2]. In addition, the macromodel by TBS can be efficiently
analyzed by a two-level relaxation analysis [8] in both frequency
and time domain, where the implicit integration is used in TBS
to obtain the time domain response. As a result, the reduction
and simulation of macromodel by TBS are both performed at
block level, their computational cost is small although the trian-
gularization increases the system size. In contrast, the reduced
model by PRIMA or HiPRIME is dense and can not be analyzed
directly with relaxation. We present the experiments in Section
6, and conclude the paper in Section 7.

2. BACKGROUND

2.1 Grimme’s Moment Matching Theorem
Using the modified nodal analysis (MNA), the system equation

of a P/G grid in the frequency(s)-domain is

(G + sC)x(s) = BI(s), y(s) = LT x(s) (1)

where x(s) is the state variable vector, G and C (∈ RN×N ) are
state matrices for conductance and capacitance with size N , B
and L (∈ RN×p) are input/output port incident matrices with p
ports, and I(s) is the input current sources.

Eliminating x(s) in (1) gives

H(s) = LT (G + sC)−1B. (2)

H(s) is a multiple-input multiple-output (MIMO) transfer func-
tion. Its expanded (s0) columns are contained in nth-order (n =
�q/p�) block-Krylov subspace K(A, R, n), i.e,

K(A, R, n) = span(V ) = {R,AR, ...,An−1R}, (3)

where two moment generation matrices are A = (G + s0C)−1C,
and R = (G + s0C)−1B. Using Arnoldi method, PRIMA [3]
finds a orthonormalized projection matrix V (∈ RN×q), which
columns span block-Krylov subspace K(A, R, n).

The reduced transfer function is

Ĥ(s) = L̂T (Ĝ + sĈ)−1B̂, (4)

where

Ĝ = V T GV, Ĉ = V T CV, B̂ = V T B, L̂ = V T L.

Note that Ĝ and Ĉ ∈ Rq×q , and B̂ and L̂ ∈ Rq×p. As proved in

[9], Ĥ(s) preserves the block moments of H(s). I.e.,

Theorem 1. If K(A, R, n) ⊆ span(V ), then the first n ex-

panded block moments at s0 are identical for Ĥ(s) in (4) and
H(s) in (2).

2.2 Moment Matching of Output Response
According to Theorem 1, if there is only one port, i.e., a (single-

input single-output) SISO system, the reduced model can match
q moments. When the port number p is large, which is typical
for P/G grids, the number of matched block moment n reduces

and the reduced transfer function Ĥ(s) is less accurate. In this
case, it is better to define an excitation current vector

J = BI(s)

similar to [10, 6, 11], and to directly match the moment of output

x(s) = (G + sC)−1J. (5)

The new moment generation matrices become A = (G+s0C)−1C,
and R = (G + s0C)−1J. Using the Arnoldi method, a qth-order
orthonormalized projection matrix can be found to contain the
new Krylov subspace K(A, R, q). As a result, the reduced output
response x̂

x̂(s) = (Ĝ + sĈ)−1Ĵ (6)

matches the first q moments of x, and is independent of the port
number p. This is because an MIMO system with right-hand-
side Bu can be transformed into superposed SISO systems with
J. The following Theorem has been proved in [11].

Theorem 2. Assume an MIMO system with unit-impulse cur-
rent source u, and define the excitation current vector J = BI(s),
where I(s) ∈ Rp and J ∈ RN . When the q columns of projection
matrix V are obtained, the reduced response at the output x̂(s) in

(6) (Ĵ = V T J) matches the first q moments of the original x(s)
in (5).

Following two systems have the same output x(s)

(G + sC)x(s) = Bu(s), (G + sC)x(s) = J(s).

In addition, J can be decomposed into p non-zero excitation com-
ponents

J =

pX
i=1

Ji = [J1 0 ... 0]T + ... + [0 ... Jp 0]T .

Clearly for each Ji (i = 1, 2, ..., p), it is equivalent to excite an
SISO system with input Ji. The according reduced output x̂i(s)
matches the first q moments of xi(s). With superposition, it
is easy to verify that

Pp
i=1 x̂i(s) matches the first q moments

of
Pp

i=1 xi(s). In contrast, PRIMA [3] matches n(�q/p�) block
moments of the transfer function with the input matrix B. In [11],
this theorem is verified by experiments and extended to inputs
with non-impulse current sources by using a generalized excitation
current source with an augmented Arnoldi orthonormalization.

Moreover, we have

Corollary 1. The first q dominant poles of x(s) in (5) are
matched by x̂(s) in (6).

Poles are calculated from the eigen-decomposition of the order

reduced moment matrix eA = eG−1 eC (∈ Rq×q). With an input of
excitation current vector J, the first q moments are identical for
x(s) and x̂(s). So do the first q dominant poles. In this paper,
the reduction is performed to match the moment of output x(s).

3. COMPACT BLOCK FORMULATION
To handle large sized P/G grids and generate an accurate and

sparse macromodel, we represent the original grid in compact
blocks, where the overlap of pole distribution between compact
blocks is minimized.

3.1 Two-level Organization of Basic Block
The original P/G grids can be partitioned into m0 basic blocks,

where dense grid with small pitch is used for a region with high
current density, and sparse grid with large pitch is used for a
region with low current density [1, 7]. The ith basic block has
state matrices gii and cii. Due to the heterogeneous structure of
grids, each block can have different RC time constant. Moreover,
gii and cii are interconnected by the coupling block gij and cij

(i �= j), respectively. The resulting block-based state matrices are

G =

2
64

g11 . . . g1m0
...

. . .
...

gm01 . . . gm0m0

3
75 C =

2
64

c11 . . . c1m0
...

. . .
...

cm01 . . . cm0m0

3
75

and
J =

ˆ
J1 . . .Jm0

˜T
, x =

ˆ
x1 . . . xm0

˜T
. (7)

206



In addition, G and C can be decomposed into the following
two-level representation containing diagonal part Y0(s) and off-
diagonal part Y1(s), where

Y0(s) + Y1(s) = G + sC. (8)

Clearly, Y0(s) = G0 + sC0 with

G0 = diag[g11, ...,gm0m0 ], C0 = diag[c11, ...,cm0m0 ].

Note that each block matrix gii or cii is symmetric positive defi-
nite (s.p.d), i.e., each basic block is stable. The off-diagonal part
(Y1)ij is composed by the coupling block gij + scij (i �= j). Its
entries are usually smaller than those in basic blocks in the diago-
nal. Accordingly, the moment generation matrices for each basic
block are

(A0)i = (gii + s0cii)
−1cii, (R0)i = (gii + s0cii)

−1Ji.

This two-level decomposition facilitates structure-preserving model
order reduction and two-level analysis in Sections 4 and 5.

3.2 Clustering
The behavior of each basic block can be approximately deter-

mined by its q dominant poles, i.e., the first q most dominant
eigen-values (λ1 ≤ ... ≤ λq). However, the basic block represen-
tation in [1, 7] is not compact. There are many basic blocks with
similar time-constants as well as many basic blocks with quite
dissimilar time-constants. To obtain a more compact block rep-
resentation, we propose a bottom-up clustering algorithm based
on the dominant poles.

Let basic block i have a q-dominant-pole set

Λi = {λ1 ≤ ... ≤ λq},
we define its pole distance from another basic block j

d(Λi, Λj) = max{min{|λm − λn| : λn ∈ Λj} : λm ∈ Λi}.
The two basic blocks have a similar pole distribution and are
clustered if d(Λ′

i, Λi) < ε, where ε is a small value specified by
the user. After clustering basic block i (gii, cii) with j (gjj , cjj)
and their interconnection (gij , cij), the q-dominant-pole set of
the clustered block becomes

Λ′
i = {λ′

1 ≤ ... ≤ λ′
q}.

More basic blocks can be merged into this cluster if they have
a similar pole distribution as the cluster. On the other hand, a
basic block itself is a cluster if it does not share a similar pole
distribution with other blocks.

For clustering purpose, the first q dominant poles for a basic
block is obtained by model order reduction. A qth-order projec-
tion matrix Vi is found for basic block i by

span(Vi) = K((A0)i, (R0)i, q) i = 1, ...,m0. (9)

It results in a order reduced ( eA0)i (∈ Rq×q), whose reciprocal
eigen-values are poles of the reduced system, and match the first
q dominant poles of the original system according to Corollary
1. The cost of eigen-decomposition is inexpensive if the size of
reduced model is small. Because the excitation current vector is
used during the moment matching of the output, the size q of
the reduced model with desired accuracy is small even when the
original basic block contains large number of ports. In contrast,
the block moment matching by PRIMA may result in a larger
cost of eigen-decomposition.

The clustering obtains m clusters of basic blocks, where m is
decided by the nature of P/G grids and ε. We call cluster as a
compact block in this paper. It results in an interconnected com-
pact block representation, where the sets of q-dominant poles for
compact blocks have minimum overlap between them. Therefore,
different from [1, 7], our method reduces the redundant infor-
mation because fewer number of compact blocks are needed to
represent the structured system.

4. TBS MODEL ORDER REDUCTION
Although clustering results in m blocks, each with a unique

pole distribution, the poles of the entire grids are not determined
only by those diagonal blocks. In this section, we discuss how
to form the upper triangular system (G, C) that are equivalent
to the original system (G, C), and the system poles of (G, C) are
determined only by its diagonal blocks [12]. This enables block
structured projection that can match more poles than the flat
projection.

4.1 Triangularization
With respect to the following G after the clustering discussed

in Section 3.2

G =

2
6664

G11 G12 . . . G1m

G21 G22 . . . G2m

...
...

. . .
...

Gm1 Gm2 . . . Gmm

3
7775 , (10)

the triangularization is to introduce a replica of G, and move
those lower triangular blocks Gij (i < j) to the upper triangular
parts at Gi,m+j . This results in an upper triangular state matrix
G

G =

2
666664

G11 G12 . . . G1m 0 0 . . . 0
0 G22 . . . G2m G21 0 . . . 0
..
.

..

.
. . .

..

.
..
.

..

.
. . .

..

.
0 0 . . . Gmm Gm1 Gm2 . . . 0

0 G

3
777775 .

(11)
C can be transformed in a similar fashion. In addition, the new
state variable x is

x =
ˆ
x1 x2 . . . xm x

˜T
,

where x is defined in (7), and the port matrix B and L have
similar structures as x. The resulting triangular system equation
is

(G + sC)x(s) = J , y(s) = LT x(s). (12)

It is easy to verify that the solution x(s) from (12) is the same as
x(s) from (1).

Below, we prove that the new triangular system is stable.

Theorem 3. The upper block triangular system (G, C) is sta-
ble.

Proof: The eigen-values of the triangular system are given by the
product of determinants of diagonal blocks

|G| =

m+1Y
i=1

|(G0)i| = |(G0)1|...|(G0)m||G|.

Because each block (G0)i (1 ≤ i ≤ m) and G are positive definite,
G is positive definite as well. The same procedure can be used to
prove that C is positive definite. Therefore, G + GT and C + CT

are both s.p.d, and hence the triangular system is stable.
Note that directly solving (12) involves a similar cost to solve

(1) as the replica block at the lower-right corner needs to be fac-
torized first. In addition, the dimension of the triangular system
is increased. However, because the reduction in TBS is performed
at the block level, the orthonormalization cost is small. Moreover,
as shown below, its benefits can be further appreciated after a
structure-preserving model order reduction, where the state vari-
able of each reduced block can be solved independently with q
matched poles.

4.2 mq-pole Matching
After the clustering in Section 3.2, we can also obtain a set of

projection matrices [V1(n1×q), . . . , Vm(nm×q)], one for each diag-
onal compact block with size ni. The projection matrix Vm+1 for
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Figure 1: Pole matching comparison: mq poles
matched by TBS and BSMOR, and q poles matched
by HiPRIME.

the replica block can be obtained from a qth-order orthonormal-
ization or practically constructed from

Vm+1 = [V1, ..., Vm] (∈ RN×q). (13)

Furthermore, instead of constructing a flat projection matrix

V = [V1, ..., Vm, Vm+1], (∈ R2N×q), (14)

we reconstruct a block-diagonal structured projection matrix V :

V = diag[V1(n1×q), ..., Vm(nm×q), Vm+1(N×q)] (15)

with V ∈ R2N×(m+1)q ,
Pm

i=1 ni = N . Note that VTV = I,

i.e., each column of eV is still linearly independent and hence the
total column-rank is increased by a factor of the block number m.
With the use of V to project G, C and B matrices at block level,
respectively, we can obtain the order reduced state matrices

eG = VTGV , eC = VTCV , eJ = VTJ .

Especially, the diagonal blocks in reduced eG and eC are called
reduced blocks.

The reduced eG matrix preserves the upper block triangular
structure eG =

» eGA
eGB

0 eGD

–
, (16)

where

eGA =

2
6664

V T
1 G11V1 V T

1 G12V2 . . . V T
1 G1mVm

0 V T
2 G22V2 . . . V T

2 G2mVm

..

.
..
.

. . .
..
.

0 0 . . . V T
mGmmVm

3
7775

eGB =

2
6664

0 0 . . . 0
V T
1 G12V2 0 . . . 0

...
...

. . .
...

V T
mGm1V1 V T

mGm2V2 . . . 0

3
7775

eGD = V T
m+1GVm+1. (17)

Since BSMOR does not use triangularization, its system poles are
not determined by those diagonal blocks. Therefore, its reduced
macromodel does not exactly have mq poles matching (See ex-
periments in Fig. 1 of Section 6). In contrast, TBS can exactly
match mq poles as discussed below.

Theorem 4. For the state matrices G and C in the upper tri-
angular block form, if there is no overlap between eigen-values of

the reduced blocks ( eGii, eCii) (∈ Rq×q), i.e.,

|( eG00)1 + s(eC00)1| ∪ ... ∪ |( eG00)m + s(eC00)m| = Null, (18)

the reduced system ( eG+s eC) exactly matches mq poles of the orig-
inal system (G + sC).

(a) #  o f nonzero=12876 (b ) #  o f nonzero=25752 (c) #  o f nonzero=618

Figure 2: Nonzero-entry pattern of conductance ma-
trices: (a) original system (b) triangular system
(c) reduced system by TBS. (a)-(c) have different
dimensions, but (b)-(c) have the same triangular
structure and same diagonal block structure.

Proof: Because the original G and C are in the upper triangular
form, and the projection by V preserves the structure, the reducedeG and eC are in the upper triangular block form as well. For an

upper triangular block system eG + s eC, its poles (eigen-values) are

the roots of its determinant |eG + s eC|, which are determined only
by the diagonal blocks

|eG + s eC| =
mY

i=1

| eGii + s eCii|.

Note that eigenvalues of |eG + s eC| represent the reciprocal poles

of the reduced model [3]. For the reduced block eGii + s eCii with
input Ji, its output exi matches q moments and the first q domain
poles of the output xi for block Gii + sCii in the triangular
system. Since the entire system consists of m compact blocks,
each with unique pole distribution, the reduced model by TBS
can match mq poles. Note that the redundant poles obtained
from the replica block are not counted here. With more matched
poles, TBS is more accurate than HiPRIME and BSMOR. This
will be verified by experiments in Section 6.

5. TWO LEVEL ANALYSIS
Because the projection in TBS preserves the structure, the re-

duced state matrices are sparse if the original ones are sparse.
In contrast, when projected by flat projection V in PRIMA and

HiPRIME, the resulted Ĝ is

Ĝ =

m+1X
i=1

m+1X
j=1

Vi
T GijVj , (19)

which loses the structure in general, and the reduced state ma-

trices are dense. This slows down simulation when Ĝ and Ĉ are
stamped back to MNA.

Due to the structure-preserving, the reduced triangular sys-
tem by TBS can be further analyzed efficiently either by a direct
backward substitution or a two-level relaxation analysis [8]. As
the two-level analysis enables the parallelized solution and can
be extended to the hierarchical analysis, it is used in this paper
to obtain the solution in both frequency and time domains. As
a result, the state variable of each reduced block can be solved
independently with matched q poles.

Using the two-level representation discussed in Section 3.1, the
system equation for the reduced model is

eYx = eb. (20)
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Figure 3: Comparison of time-domain responses be-
tween the method in [2], HiPRIME, BSMOR, TBS
and the original. TBS is identical to the original.

In frequency domain at a frequency point s, (20) becomes

eY = eG + s eC = eY0(s) + eY1(s), eb = eJ (s),

and in time domain at a time instant t with time step h, (20)
becomes

eY = eG +
1

h
eC = eY0(h) + eY1(h), eb =

1

h
eCx(t − h) + eJ (t).

Note that the time step h can be different for each reduced block
according to its dominant-pole (λ1).

The state vector x can be solved for each block in a fashion of
the two-level relaxation analysis [8], where

x = P (0) − PQ (21)

with

P (0) = ( eY0)−1eb, P = ( eY0)−1 eY1, Q = (I + P )−1P (0). (22)

To avoid explicit inversion, LU or Cholesky factorization is ap-

plied to eY0 and I + ( eY0)−1 eY1. As eY0 shows the block diagonal
form, each reduced block matrix is first solved independently with
LU/Cholesky factorization and substitution at the bottom level.
The results from each reduced block are then used further to
solve the coupling block at the top level, and the final xk of each

reduced block is updated. In addition, because the reduced eY
has preserved block triangular structure, an implicit Back-Euler
integration with the relaxation can stably converge [8].

6. EXPERIMENTS
We implemented the TBS and experimented on a Linux work-

station (P4 2.66GHz, 1Gb RAM). The RC mesh structures of
the P/G grid are generated from industrial applications. In this
section, we first verify that TBS preserves triangular structure
(sparsity) and matches mq poles, and then compare its accuracy
and runtime with the method in [2], HiPRIME [6] and BSMOR
[7]. The excitation current sources (unit-impulse) are explicitly
considered in all MOR based methods to avoid block moment
matching. The clustered block structure obtained from TBS is
used as the partition for HiPRIME and [2], and the same block
number is used for BSMOR but each block has the same size.
Back-Euler method is used for time-domain simulation, and two-
level analysis is applied for TBS, BSMOR and [2]. In the compar-
ison of the macromodel building and simulation time, all reduced
models have similar accuracy. In the comparison of the waveform
error, all MOR methods use the same number of matched mo-
ments, and macromodels for TBS and [2] have the similar size
and sparsification ratio.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
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Figure 4: Comparison of frequency-domain re-
sponses between HiPRIME, BSMOR, TBS and the
original. TBS is identical to the original.

6.1 Accuracy Comparison
We use a non-uniform RC mesh (size 2K × 2K) with 32 same

sized basic blocks and 32 unit-impulse current sources located at
centers of basic blocks. Each basic block has a different RC time
constant. The number of connections between a pair of basic
blocks are also different. HiPRIME, BSMOR and TBS all use
q = 8 moments to generate the reduced model. The clustering
algorithm found 4 clusters, each with 4, 4, 8, 16 basic blocks
respectively. As a result, TBS constructs a block structured pro-
jection using 4 blocks with the aforementioned sizes. In contrast,
BSMOR constructs a block structured projection using 4 blocks
with same size.

Fig. 2 shows the nonzero-entry pattern of the conductance ma-
trix before triangularization in Fig. 2 (a), after triangularization
in Fig. 2 (b), and after the TBS reduction (m = 4, q = 8) in Fig.
2 (c). Fig. 2 (b) and (c) have the similar block triangular struc-
ture, which verifies that TBS preserves the block structure. Due
to the intrinsic sparsity by TBS, the reduced model has a 40.1%
sparsification ratio. In contrast, HiPRIME generates a fully dense
state matrices after the reduction and the sparsity in the reduced
model by [2] is obtained by an additional LP-based sparsification.

To compare pole-matching, we choose one observation port
that is not at the source node. The relative errors are calcu-
lated as the magnitude difference of poles between the reduced
and original models. As shown by Fig. 1, HiPRIME can only
approximate 8 poles of the original model, but TBS and BSMOR
can approximate 32 poles due to increased column rank in the
projection matrix. Moreover, for poles matched by both TBS
and BSMOR, TBS is about 6X more accurate on average. As
discussed in Section 4.2, this is because the poles of triangular-
ized system in TBS are determined only by its diagonal blocks.

Fig. 3 compares the time-domain response at one port for
HiPRIME, BSMOR, [2], TBS and the original under a unit-
impulse input. The time-domain waveform error is counted as
the relative deviation at peak voltage. The reduced model by
TBS is visually identical to the original model, but HiPRIME has
up to 36% error due to much fewer matched poles, and [2] has
up to 64% error due to the sparsfication. As mentioned before,
the projection matrix constructed by BSMOR uses 4 blocks with
the same size. As a result, it is not exact in matching poles and
results in up to 23% error. Fig. 4 further presents the frequency-
domain response under an impulse input. Using same number of
moments, we observe that the reduced model by TBS is identical
to the original up to 50GHz, but the one by BSMOR or HiPRIME
has non-negligible deviations beyond 10GHz.

6.2 Scalability Study
Table 1 compares the accuracy scalability of reduced macro-

model by [2], HiPRIME, BSMOR and TBS. All reduced mod-
els by MOR use the same number of moments. The standard
deviation of waveform differences between the reduced and the
original models is used as the measure of error. We use higher
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ckt node port order [2] HiPRIME BSMOR TBS
(N) (p) (q)

ckt1 1K 48 8 5.54e-6 9.09e-6 4.87e-6 5.03e-7
ckt2 10K 320 40 1.21e-5 2.31e-5 7.93e-6 1.84e-6
ckt3 100K 480 60 1.31e-2 6.82e-4 1.91e-4 3.02e-5
ckt4 1M 800 100 6.01e-2 9.67e-3 4.23e-3 1.27e-4
ckt5 7.68M 4800 200 0.11 9.93e-2 5.10e-2 3.01e-3
ckt6 7.68M 6.14M 300 NA NA NA 5.04e-3

Table 1: Time-domain waveform error of reduced models by the method in [2], HiPRIME, BSMOR and TBS
under the same order (number of matched moments).

ckt [2] HiPRIME BSMOR TBS
build sim build sim build sim build sim

ckt1 0.44s 0.08s 0.15s 1.02s 0.12s 0.08s 0.09s 0.08s
ckt2 2.19s 1.24s 0.54s 1min:42s 0.63s 1.18s 0.11s 1.02s
ckt3 1min:17s 1min:51s 5.76s 2hr:48min:20s 1min:2s 1min:38s 1.62s 1min:32s
ckt4 34min:58s 21min:32s 47.3s > 2day 4min:54s 11min:42s 20.7s 11min:23s
ckt5 4hr:43min:18s 1day:5hr:11min 2min:42s > 2day 1hr:45min 1day:1hr:36min 2min:8s 1day:18min
ckt6 NA NA NA NA NA NA 6min:16s 1day:1hr:29min

Table 2: Comparison of runtime under the similar accuracy of the method in [2], HiPRIME, BSMOR and
TBS. The runtime includes macromodel building and simulation time, respectively.

order reduced model (by 4X) as the baseline for comparison if
the waveform of the original model is unavailable. We find that
the accuracy of [2] degrades when a large sparsity ratio is needed,
because LP-based sparsification can not preserve accuracy. On
the other hand, using moment matching based projection with
preserved sparsity, TBS generates a macromodel with higher ac-
curacy. For example, it has a 38X higher accuracy than [2] when
reducing a 7.68M circuit with 4800 ports to a (1K) macromodel
with 32% sparsity. For the same circuit, TBS is 17X more accu-
rate than BSMOR due to the exact mq-pole matching, and is also
33X more accurate than HiPRIME due to more matched poles.
Because [2] and BSMOR are inefficient to build macromodels and
HiPRIME is inefficient to simulate macromodels, only TBS can
handle a 7.68M circuit with 6.14M ports for less 1% waveform
error.

Table 2 compares the runtime scalability of reduced macro-
model by [2], HiPRIME, BSMOR and TBS. The runtime time
here includes both the macromodel building time and macro-
model simulation time (time-domain). The same circuits in Ta-
ble 1 are used (but reduced state matrices are constructed with
the similar accuracy). As for the the macromodel building time,
[2] needs the additional LP-based sparsification, which is inef-
ficient for large sized P/G grids. For example, for a RC-mesh
with 7.68M nodes, the method in [2] needs 4hr : 43min : 18s to
build a reduced macromodel with 1K nodes and sparsity 30%, but
TBS only spends 2min : 8s (133X speedup) to build the similar
sized macromodel. Moreover, TBS also has 54X speedup than
BSMOR (1hr : 45min) because orthonormalization is applied to
each block independently in TBS. HiPRIME orthnormalizes each
block independently, but its building time is still larger than TBS.
This is due to that a higher order (4X) is required to generate
a reduced model with similar accuracy as TBS. Moreover, as for
the simulation time, because HiPRIME still uses flat projection,
it results in a dense macromodel, loses the structure information
and can not be analyzed hierarchically. Therefore, it becomes
inefficient to be used for time-domain simulation. As a result, its
simulation time is much larger than the other macromodels. On
the other hand, [2], BSMOR and TBS enable the two-level anal-
ysis. For a circuit with 100K nodes and 480 ports, TBS achieves
109X runtime speedup compared to HiPRIME. In addition, for
the circuit with 7.68M nodes and 6.14M ports, only TBS can
handle it with 6min : 16s to build and 1day : 1hr : 29min to
simulate.

7. CONCLUSIONS
In this paper, we have proposed an accurate and efficient TBS

model order reduction method to verify integrity of for large sized

P/G grids in the time-domain. Using triangularization, we show

that the original system is stably transformed into a form with up-

per triangular block structure, where system poles are determined

only by m diagonal blocks, and m is decided by the nature of the

structured network. With an efficient dominant-pole based clus-

tering and a block structured projection, the reduced triangular

system can match mq poles of the original system. Experiments

show that the waveform error is reduced 33X compared to the

flat projection method by HiPRIME. Moreover, with a two-level

block representation, the reduction and analysis in TBS can be

performed for each block independently. Therefore, it reduces

both macromodel building and simulation time. TBS is up to

54X faster to build macromodels than BSMOR, and up to 109X

to simulate macromodels in time-domain than HiPRIME. In ad-

dition, as TBS preserves sparsity, it is up to 133X faster to build

macromodels than [2].
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