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ABSTRACT
Steiner routing is a fundamental yet NP-hard problem in VLSI
design and other research fields. In this paper, we propose to
model the routing graph by an RC network with routing terminals
as input ports and Hanan nodes as output ports. We show that
the faster an output reaches its peak, the higher the possibility for
the correspondent Hanan node to be a Steiner point. Iteratively
adding one or multiple selected Steiner points to build and im-
prove Steiner trees leads to 1-cktSteiner and Blocked-cktSteiner
(in short, B-cktSteiner) algorithms, respectively. When there are
no routing obstacles, 1-cktSteiner obtains similar wirelength com-
pared with the best existing algorithm FastSteiner. Both are less
than 1% worse than the exact solution, but 1-cktSteiner is up to
11.3X faster than FastSteiner. Compared with the fastest exist-
ing heuristic FLUTE, B-cktSteiner has similar runtime but up to
1.9% shorter wirelength. Different from FastSteiner and FLUTE
which are only applicable to non-obstacle cases, 1-cktSteiner and
B-cktSteiner can be applied to routing with obstacles with mini-
mal runtime increase. Compared with the best existing obstacle-
avoiding algorithm An-OARSMan, 1-cktSteiner has similar run-
time and reduces wirelength by 6.12%, and B-cktSteiner has an
average speedup of 352X with a similar wirelength.

Categories and Subject Descriptors: B.7.[Hardware]: – In-
tegrated Circuits–Design Aids

General Terms: Algorithms, Design, Performance

Keywords: Routing, Simulation, RSMT, OARSMT

1. INTRODUCTION
Rectilinear Steiner minimum tree (RSMT) construction is a

fundamental research problem in VLSI design. For a given set
of terminals, the RSMT problem is to find a set of additional
points, Steiner points, such that the rectilinear minimal spanning
tree (RMST) connecting all terminals and Steiner points has the
minimal length. The RSMT problem is NP -complete. Yet, a few
properties have been revealed to help solve this problem: An op-
timal RSMT can be found in the Hanan grid, which is composed
by horizontal and vertical lines from each terminal; Also, at most
n− 2 Steiner points are required to construct an optimal RSMT.

GeoSteiner [1], an exact algorithm with a high complexity, and
several heuristics [2–6] have been proposed, all assuming no obsta-
cles for routing. In practice, macro cells, IP blocks and pre-routed
nets are considered as obstacles for routing, and obstacle-avoiding
RSMT (OARSMT) construction must be studied. Escape graph
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is often used to convert the OARSMT problem to a RSMT prob-
lem on a graph. The distance between two points in the presence
of obstacles is calculated based on the obstacle-avoiding shortest
path algorithm. [7] presented an exact algorithm for obstacle-
avoiding Euclidean Steiner tree construction, but its high com-
plexity prohibits it from practical use. The routing quality of
line search heuristics is not good for multiple terminals. Most
existing obstacle-avoiding RSMT algorithms use multi-terminal
variants of the maze algorithm, with a high space demand but
a result far from optimal. Based on track graph reduction and
Ant-Colony-Optimization, a very recent work, An-OARSMan [8],
achieves small wirelength with a reduced but still long runtime.

The existing heuristics for RSMT and OARSMT improves ei-
ther runtime or wirelength but not both when the number of
terminals is large. Ideally, we need an algorithm to achieve the
best quality and efficiency of existing work simultaneously. To
this end, we propose an algorithm, cktSteiner, which simulates
the routing problem by circuit behavior. In our algorithm, the
routing graph is modeled as an RC mesh. When impulse cur-
rents are applied at the terminals, the faster a node reaches its
peak voltage, the higher the possibility is for the node to become
a Steiner point. Therefore, we can easily select Steiner points
from Hanan nodes and build high-quality RSMT and OARSMT
efficiently. We call the resulting algorithms cktSteiner.

cktSteiner has a few advantageous algorithmic features. It uses
numerical circuit simulation (precisely, numerical model order
reduction to obtain three poles/residuals) to determine Steiner
points, while virtually all existing works use combinatorial algo-
rithms. cktSteiner applies to both RSMT and OARSMT with
a small runtime difference, but existing RSMT algorithms either
can not be extended to the OARSMT problem or suffer a big
runtime increase. Because cktSteiner simulates routing by circuit
behavior, it is a new addition to the existing simulation-based
algorithms such as simulated annealing, genetic algorithm, and
force-based (placement) algorithm that have been successfully
used in VLSI design. In addition, cktSteiner obtains the best
wirelength in the shortest runtime compared with the existing
algorithms [2-8].

The remainder of the paper is organized as follows: Section
2 describes the problem formulation, Section 3 introduces ckt-
Steiner algorithms and Section 4 presents experimental results.
We conclude in Section 5. A complete version of this paper is
available at http://eda.ee.ucla.edu.

2. PROBLEM FORMULATION
In this paper we start from the routing model as in [9] and

tessellate the routing area into rectangular partitions as global
tiles, and pins within the same global tile are mapped into the
center of it. The routing plane can be formally modeled by an
undirected graph Gh(V, E), namely the Hanan grid, where each
vertex v ∈ V represents a global tile, and each edge e ∈ E repre-
sents the routing area between two adjacent tiles. An example of
the Hanan grid is shown in Figure 1 (a). To consider the impact
of obstacles such as hard macros or pre-routed nets on routing,
the routing graph Ge should be constructed by intersecting lines
from vertices as well as the edges of the obstacles. We call the re-
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Figure 1: (a) Hanan grid with three terminals. (b) Escape graph with the same three terminals and one
obstacle. (c) The corresponding routing graph. (d) The corresponding RC mesh

sulting obstacle-avoiding routing graph an escape graph [10]. An
example of an escape graph is shown in Figure 1 (b).

Without the loss of generality, in this paper, we use a uniform
G, or global routing graph (GRG), which is fine enough so that
all the Hanan nodes or the nodes of the escape graph are located
on the nodes of it, i.e., the Hanan grid Gh or the escape graph
Ge are the subgraphs of G. It is obvious that any Steiner tree
constructed in the Hanan grid or in the escape graph can also
be found in our routing graph. Such a routing graph is shown in
Figure 1 (c), which works for both (a) and (b). By introducing
this routing graph, routing with or without obstacles are indis-
tinguishable from each other except that the distance between
two nodes should be the obstacle-avoiding distance in the cases
of obstacle-avoiding routing.

With respect to the above discussions, we formulate the follow-
ing problem:

Formulation 1. Given a routing graph G as constructed above
with an embedded multi-terminal net, find a set of Steiner points
in G such that the resulting Steiner routing of the multi-terminal
net has minimum routing wirelength.

3. PROPERTIES AND ALGORITHMS
3.1 Circuit Model and its Implication

To map GRG into an RC mesh circuit model, we model each
edge of GRG with a unit resistor, and connect each vertex of
GRG to ground via a unit capacitor and a unit resistor in parallel.
Terminals are modeled as input ports, each with a unit impulse
current source. The Hanan nodes or the nodes of the escape graph
are modeled as output ports. Such a circuit model is illustrated
in Figure 1 (d). Note that when there are obstacles, we still keep
the resistors and capacitors in the obstacle area.

With a unit impulse current source at each terminal at time
t = 0, the signals start to propagate until steady state is reached.
It takes a finite time for the signal to propagate throughout the
mesh and to charge the capacitors. Then the signal at one node
would decay through the DC path of the grounded resistors. We
define peak time as the time for the voltage response to reach its
maximum value.

Take Figure 2 as an example. Shown in (a)is a net with three
terminals (labeled with circles) embedded within a 11×10 routing
graph G, where the corresponding Hanan nodes are also marked
(with triangles). For the ease of presentation, we assign a label
to each node in G. The voltage responses at the Hanan nodes
(vertices #39, #61 and #63) are shown in Figure 2 (b). The
peak time at vertex #61 is smaller than those other two nodes,
and vertex #61 is actually the Steiner point for the 3-terminal
set.

The above example implies that the faster a voltage response
reaches its peak, the higher the probability is for it to become

a Steiner point. This can be explained as follows: in general,
Steiner points tend to have small distances to all nearby terminals.
Similarly, in the mesh, the time constant between two points is
nearly proportional to their distance. Therefore, the more likely
a node is a Steiner point, the smaller the weighted distance is
from this node to the terminals, in turn the smaller the RC time
constant is for the node, and finally the smaller its peak time is.

Similar phenomenons can be observed in other cases, too. We
randomly generate 20 test cases with 100 terminals, and construct
the optimal RSMT by GeoSteiner [1] to get all the Steiner points.
We order all the Hanan nodes in sequence with increasing peak
times and calculate the probability for each Hanan node to be-
come a Steiner point in the optimal solutions. The results are
shown in Figure 3. The x-axis is the order in the sequence, and
the y-axis is the normalized probability. Generally, the probabil-
ity decreases when the order of the Hanan node in the sequence
decreases and the peak time increases.

Based on these results, we have the following observation:
Observation 1. A Hanan node is more likely to become a

Steiner point when the voltage response of the corresponding node
in the RC mesh reaches its peak earlier.

Algorithm 1 1-cktSteiner

OUTPUT: Steiner point set S, RSMT = MST{S ∪ T};
Initialization: Steiner point set S = Φ;
Initialization: l0 = MST (T ), flag = 0;
while There are less than n− 2 nodes in S and E �= Φ and flag <
n/8 do

while The 1st node A in E is in the current tree do
Remove A from E;

end while
Select the first node A in E;
l1 = MST{S ∪ T ∪ A};
if l1 < l0 then

S = S ∪ A;
l0 = l1;
flag = 0;

else
flag = flag + 1;

end if
Remove A from E;

end while

3.2 Steiner Tree Construction Algorithms
Based on Observation 1, we determine Steiner points based on

voltage response in the RC mesh for the routing graph.
The voltage response at one node of an RC network can be

expressed as:

v(t) =

qX

i=1

rie
t

λi , (1)
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(a) (b)

Figure 2: (a) Illustration of a routing graph with a three-terminal net (circle) and its corresponding Hanan
nodes (triangle). (b) Time domain responses at the nodes #39, #61, and #63 in (a). Note that for #61 a
different x-axis range is used. It reaches voltage peak quicker than others and is the Steiner point.
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Figure 3: The probability for the Hanan nodes to
become a Steiner point with respect to the order in
the sequence for twenty 100-terminal test cases.

where n is the pole number, λi are the poles, and ri are their
corresponding residuals. Usually, only the first two and three
poles are dominant for a linear RC circuit. Therefore, third order
approximation (q = 3) of (1)is used in this paper. By taking
the derivative with respect to time in (1) with the third-order
approximation, we can calculate the peak time, tpeak , as

3X

i=1

ri

λi
e

tpeak
λi = 0 (2)

Then we build a sorted and pruned Hanan nodes sequence in
the ascending order according to their peak times. Because at
most n − 2 points need to be added into the RSMT, we can use
our ordered Hanan nodes sequence to construct the RSMT based
on 1-Steiner heuristic. Our algorithms are faster than other 1-
Steiner based heuristics in the sense that it does not need to
employ a special algorithm to select the Steiner points during
tree construction.

We first calculate the wirelength of the MST given the set of
input terminals. Then iterated 1-Steiner idea can be employed.
We iteratively add one Hanan node according to its order in the
sequence. If one Hanan node is already in the tree we construct,
we skip it. Then we compare the wirelength of the new MST
with the previous MST. If the new wirelength is shorter, then the
node is selected. We continue this step until we have added n− 2
Steiner points (which is the maximum possible value) or we have
examined a user-defined consecutive number (which is n/8 in this
paper) of Hanan nodes that fail to decrease the wirelength. The
1-cktSteiner algorithm is summarized in Algorithm 1.

In general, more than one Steiner node can be added each
time for the algorithm in Algorithm 1. We call the vertices to be
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Figure 4: Tradeoff between wirelength and runtime
in (a) 20 terminal case and (b) 100 terminal case.
The wirelength and runtime are normalized.

added simultaneously as a block of vertices. If the total wirelength
using a block is reduced, then we take all the vertices in the block
as Steiner points, otherwise, we check the vertices in the block
one-by-one. In this case, 1-cktSteiner algorithm becomes a block
based algorithm, and the number of Steiner points in a block is
called block size. In Figure 4, we study the interaction between
wirelength, runtime and block size. When the block size increases
from 1 to 10, clearly the runtime decreases but the wirelength
increases. It is easy to see that block size is an effective knob
for trade-off between wirelength and runtime. To accommodate
different numbers of terminals, we can use a self-adjustable block
size. In experiments we find that given the total terminal number
n, setting block size B ∈ (n−2

16
, n−2

4
) can result in a good balance

between wirelength and runtime, which leads to the B-cktSteiner.

4. EXPERIMENTS AND DISCUSSIONS
We experiment on a few groups of test cases, each group for a

selected number of terminals. We generate twenty test cases for
each group, with terminals randomly placed in a routing plane
with 1000 × 1000 grid. We report the average wirelength and
runtime for each group. All experiments are conducted on a UNIX
workstation with 1.9GHz P4 processor and 2GB RAM.

We implement the circuit construction and simulation in MAT-
LAB and the cktSteiner tree construction part in C language. For
experiments below, we always use B = n−2

8
for B-cktSteiner. In-

tuitively, if we divide GRG (general routing graph) into a finer
grid, we may simulate the routing plane more accurately and ob-
tain shorter wirelength but longer runtime. Figure 5 illustrates
how the grid granularity influences wirelength and runtime. We
use a test case with 20 terminals routed by 1-cktSteiner. When
the grid becomes finer, runtime increases and wirelength reduces.
A nice tradeoff between runtime and wirelength is achieved by a
4X finer grid, where wirelength is reduced by 6% and runtime in-
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Terminal # Wirelength Runtime (ms)
Geo FastSteiner 1-ckt Flute B-ckt Geo FastSteiner 1-ckt Flute B-ckt

5 9 9 9 9 9 3.05 0.23 0.06 0.0007 0.0006
10 27 27 27 27 27 3.63 0.32 0.09 0.008 0.009
20 77 78 78 79 80 14.4 1.8 0.80 0.043 0.038
50 290 291 292 303 305 38.6 8.1 1.53 0.18 0.23
100 811 821 819 862 848 298 15 3.12 0.47 0.62
500 8305 8377 8395 9032 8861 12600 140 12.4 3.97 5.31

Average 1.000 1.006 1.007 1.037 1.034 1.000 0.093 0.025 0.002 0.002

Table 1: Comparison between Geo-Steiner, FastSteiner, 1-cktSteiner, FLUTE and B-cktSteiner.
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Figure 5: Normalized runtime and wirelength with
respect to RC mesh granularity. The test case has
20 terminals and is routed by 1-cktSteiner.

T # O # Wirelength Runtime (s)
A-O 1-ckt B-ckt A-O 1-ckt B-ckt

5 3 4380 4380 4620 0.02 0.06 0.00001
10 9 26990 26980 27450 0.07 0.24 0.0009
20 10 43630 41270 45820 0.24 0.49 0.03
50 10 53260 50710 53770 2.58 4.17 0.98
100 10 80040 76380 81340 26.9 32.5 2.37
500 20 200360 188090 203240 1660 1082 109

Average 1.000 0.965 1.027 1.000 1.651 0.089

Table 2: Comparison between An-OARSMan, 1-
cktSteiner and B-cktSteiner for various terminal (T)
and obstacle number (O).

creases by 3X compared to using the original grid (equivalent to
GRG). A similar tradeoff has been observed for other test cases as
well. Therefore, we use a 4X finer grid in all experiments below.

Table 1 presents experiments for obstacle-free routing. We first
compare 1-cktSteiner with the exact solution of GeoSteiner [1],
and FastSteiner which generates the shortest wirelength among
existing heuristics. Both 1-cktSteiner and FastSteiner [5] are
about less than 1% worse than GeoSteiner. 1-cktSteiner is on
average 5.2X faster (11.3X faster for the largest example) than
FastSteiner, which in turn is on average 208X faster than GeoSteiner.
Table 1 also compares B-cktSteiner with FLUTE [6], the fastest
algorithm among existing heuristics. B-cktSteiner achieves up to
1.9% wirelength reduction with a similar runtime compared to
FLUTE. On average, B-cktSteiner is 3.4% worse than the exact
solution, and FLUTE is 3.7% worse. Compared to 1-cktSteiner,
B-cktSteiner obtains similar wirelength for up to 20 terminals but
2.7% longer wirelength for larger numbers of terminals, however
the runtime of B-cktSteiner is 24X smaller.

Table 2 presents experiments for routing with obstacles. Com-
pared to An-OARSMan [8], the best existing heuristic for obstacle-
avoiding routing, 1-cktSteiner reduces wirelength by up to 6.12%
for large test cases at a similar runtime, and B-cktSteiner has an
average speedup of 352X with wirelength similar to that produced
by An-OARSMan.

We also perform a study on the relationship between the num-
ber of terminals (n) and the number of Steiner points (q) used
by 1-cktSteiner. For each terminal number, we use 10 randomly
generated test cases for both the obstacle-free routing and the
obstacle-avoiding routing. The result is shown in Figure 6. Clearly,
the maximum number of Steiner points required is less than n−2,
and in most cases, about n

2
Steiner points are required for both

RSMT and OARSMT. This observation will be verified and may
be used to develop more efficient algorithms in the future.

5. CONCLUSIONS AND DISCUSSIONS
Using RC network to simulate routing, we have proposed a cir-

cuit simulation based Steiner routing algorithm called 1-cktSteiner,
and a faster version B-cktSteiner algorithm. When constructing
RSMT without obstacles, 1-cktSteiner obtains similar length but
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Figure 6: The relationship between the number of
terminals n and the number of Steiner points q re-
quired using 1-cktSteiner: (a) obstacle-free routing
and (b) obstacle-avoiding routing

runs 11.3X faster compared to FastSteiner, the existing algorithm
with the minimum wirelength. B-cktSteiner reduces wirelength
by up to 1.9% at similar runtime compared with FLUTE, the
existing most efficient algorithm. In addition, our algorithms can
deal with obstacle-avoiding cases at a similar runtime compared
with obstacle-free cases. 1-cktSteiner reduces up to 6.12% wire-
length and runs 352X faster compared with An-OARSMan, the
existing best algorithm for obstacle-avoiding routing.
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