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ABSTRACT
Field programmable dual-Vdd interconnects are effective to
reduce FPGA power. Assuming uniform length intercon-
nects, existing work has developed time slack budgeting to
minimize power based on estimating the lower bound of
power reduction using dual-Vdd for given time slack. In this
paper, we show that such lower bound estimation cannot
be extended to mixed length interconnects that are used in
modern FPGAs. We develop a technique to estimate power
reduction using dual-Vdd for mixed length interconnects,
and apply linear programming (LP) to solve slack budgeting
to minimize power for mixed length interconnects. Exper-
iments show 53% power reduction on average compared to
single-Vdd interconnects. Furthermore, this paper presents
a simultaneous retiming and slack budgeting algorithm to
reduce power in dual-Vdd FPGAs considering placement
and flip-flop binding constraints. The algorithm is based on
mixed integer and linear programming (MILP) and achieves
up to 20% power reduction compared to retiming followed
by slack budgeting. We propose a runtime efficient flow to
apply simultaneous retiming and slack budgeting only when
it is necessary. To the best of our knowledge, this paper is
the first in-depth study of simultaneous retiming and slack
budgeting for dual-Vdd programmable FPGA power reduc-
tion while considering layout constraints.

Categories and Subject Descriptors: B.7.2[Hardware]:
Integrated circuits – Design aids
General Terms: Algorithms, design
Keywords: Low power, retiming, FPGA

1. INTRODUCTION
Field programmable dual-Vdd techniques have been used for

FPGA power reduction, e.g. [1, 2]. In this paper, we assume
dual-Vdd interconnects identical to those in [3]. The interconnects
consist of buffered wire segments. Buffers have programmable Vdd
levels. There are Vdd-level converters at the inputs and outputs of
logic blocks, but not between wire segments. Budgeting slacks in
∗
This paper is partially supported by NSF grant CCR-0306682. Ad-

dress comments to lhe@ee.ucla.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

interconnects to minimize power is presented in [4, 3]. [3] is able to
reduce more power than [4], where Vdd is defined for a routing tree.
Uniform wire length and buffer size is assumed in [3]. However,
the state-of-the-art commercial FPGAs have used wire segments of
different lengths to improve performance [5]. Because the lower
bound estimation of power reduction in [3] is no longer valid for
mixed length interconnects, the first contribution of this paper is
to develop a linear programming (LP) based slack budgeting for
mixed-length interconnects based on an upper bound estimation
of power reduction. The experimental results show 53% power
reduction on average compared to single-Vdd interconnects.

The slack budgeting in [3] is applied only within combinational
subcircuits. Simultaneously considering all combinational subcir-
cuits in a sequential circuit may reduce more power, as illustrated
in Figure 1, where circuits in (a) and (b) have the same clock period
of 4 units. To change a buffer from VddH to VddL, one needs a
slack of 2 units, no extra buffer can be powered by VddL in (a),
but one extra buffer can be powered by VddL in (b). Because (b)
can be obtained from (a) by retiming, simultaneous retiming and
slack budgeting is able to reduce more power than slack budgeting
alone in [3]. The second contribution of this paper is to develop
mixed integer and linear programming (MILP) based simultaneous
retiming and slack budgeting for power reduction while considering
placement and flip-flop (FF) binding constraints. Note that retim-
ing has been studied only for performance and area optimization
in FPGAs [6, 7] without considering FF binding. Note that our
retiming approach will not increase chip area since we only use
available FF slots. To the best of our knowledge, this paper is the
first in-depth study of simultaneous retiming and slack budgeting for
dual-Vdd programmable FPGA power reduction while considering
layout constraints including FF binding.
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Figure 1: Retiming followed by budgeting vs. Si-
multaneous approach

The rest of this paper is organized as follows. Section 2 intro-
duces background and modeling. Section 3 describes a dual-Vdd



slack budgeting algorithm for mixed wire length FPGAs. Section
4 presents a post-layout stage retiming algorithm. Experimental
results are given in Section 5. Section 6 concludes the paper.

2. PRELIMINARIES

2.1 Delay and Power Modeling with Dual-Vdd
To make the presentation simple, we summarize the notations

frequently used in this paper in Table 1. They will be explained in
detail when first used.
G(V, E) retiming graph
PI set of all primary inputs and register outputs
PO set of all primary outputs and register inputs
FOv set of all fanout vertices of vertex v in G

SRC set of vertices corresponding to routing tree sources

Ri ith routing tree in FPGA

FOij set of fanout switches of jth switch in Ri

SLij set of sinks in the fanout cone of jth switch in Ri

a(v) arrival time of vertex v in G

d(u, v) delay from vertex u to vertex v in G

Nr total number (#) of routing trees in FPGA

cij load capacitance of jth switch in Ri

lik # of switches in the path from source to kth sink in Ri

Sik allocated slack for kth sink in Ri

pi0 vertex in G corresponding to the source of Ri

pik vertex in G corresponding to kth sink of Ri

fs(i, j) transition density of jth switch in Ri

Nk(i) # of sinks in Ri

Ns(i) total # of switches in Ri

Nl(i) # of VddL switches in Ri

Fn(i) estimated # of VddL switches in Ri

we FF number in e(i, j)
ru retiming value in node u

Table 1: Notations frequently used in this paper

The Elmore delay model is used to calculate the routing delay.
Following [3], we define the fanout cone of a switch as the sub-tree
of the routing tree rooted at the switch. To incorporate dual-Vdd
into timing analysis, we use SPICE to pre-characterize the intrinsic
delay and effective driving resistance for a switch under VddH and
VddL, respectively. Vdd-level has little impact on the input and
load capacitance of a switch [8], and such impact is ignored in this
paper.

There are three types of power sources in FPGAs, switching
power, short-circuit power and static (leakage) power. The first two
contribute to the dynamic power and can only occur when a signal
transition happens at the gate output. Although a timing change
may change the transition density, we assume (as in [3]) that the
transition density for an interconnect switch will not change when
VddL is used. The third type of power, static power, is the power
consumed when there is no signal transition for a circuit element.
We assume that the unused switches are power-gated. Let vij

indicate Vdd-level of the jth switch in Ri as follows.

vij =
n

1 if Vdd-level of the jth switch in Ri is VddH

0 if Vdd-level of the jth switch in Ri is VddL

The interconnect power reduction Pr using programmable dual-
Vdd can be expressed as

Pr =

Nr−1
X

i=0

Ns(i)−1
X

j=0

(1 − vij)(0.5fclkfs(i, j)cij∆V dd
2 + ∆Ps(i, j))

(1)

which is the sum of dynamic and leakage power reduction. Nr is
the total number of routing trees, fs(i, j) is the transition density
of the jth switch in the ith routing tree Ri, Ns(i) is the number
of switches in Ri, and ∆Ps(i, j) and cij are the leakage power
reduction and load capacitance of each switch, respectively.

2.2 Retiming with FF constraints
A directed retiming graph is constructed to model the circuit for

sequential timing analysis. Vertices represent the inputs/outputs of
basic circuit elements such as LUTs. Edges are added between
the inputs of combinational logic elements (e.g. LUTs) and their
outputs, and between the connected pins specified by the circuit
netlist. Each edge is annotated with the delay d(e) required to pass
through the circuit element or routing and the weight w(e), which
is the number of FFs inserted in it. We use PI and PO to represent
the set of primary inputs and outputs, respectively.

In order to retime an FPGA design during post-layout optimiza-
tion, we need to consider placement and FF binding constraints. In
older FPGA devices, a logic cell (LC) has only one output. If an
LUT drives an FF within the same LC, the combinational output
of an LUT is NOT allowed to drive other FFs since it cannot be
seen by other FFs. In newer devices such as the Xilinx Virtex-II [9]
or Altera Stratix II [10], an LC has both the combinational output
(without FF) and sequential output (with FF). If an LUT drives an
FF within the same LC, the sequential output can still drive other
FFs either within the same cluster (through local routing) or in
other clusters (through global routing). In other words, FFs can be
cascaded. FFs within a cluster can be cascaded through an LUT
(acting as a WIRE) or a MUX. FFs within different clusters can be
cascaded going through a global routing and an LUT or MUX in the
other cluster. In post-layout retiming, we try to keep most layout
(both placement and global routing) unchanged, therefore we allow
an LUT to drive any available FFs within the same cluster, but not
FFs in a different cluster.

3. DUAL-VDD SLACK BUDGETING
In this section, we present an LP-based time slack budgeting al-

gorithm for mixed interconnect wire lengths. Time slack is first
allocated to each routing tree by formulating the problem as an LP
problem considering the load capacitance of each switch explicitly.
Similar to the LP based algorithm for uniform interconnect wire
length in [3], we then perform a bottom-up assignment algorithm
to achieve the optimal solution within each routing tree for the allo-
cated time slack, and finally perform a refinement step to leverage
surplus time slack.

3.1 Estimation of Interconnect Power
Reduction

Estimating power reduction for the allocated slack is the key
to enable the LP based algorithm. The slack Sij of a connection
between the source and the jth sink in Ri is defined as the amount
of delay which could be added to this connection without increasing
the cycle time Tspec. There is an upper bound for slack, which is
the delay increase when VddL is assigned to all the switches in a
tree. Clearly, slack greater than the upper bound cannot lead to
more VddL switches. We define the useful slack of each routing
tree sink as the slack less than this upper bound. For the rest of the
paper, we use slack to represent the useful slack. The slack upper
bound constraints can be expressed as

0 ≤ Sik ≤ Dik 0 ≤ i < Nr ∧ 1 ≤ k ≤ Nk(i) (2)

where Nk(i) is the number of sinks in Ri and Dik is the delay
increase of the path from the source to the kth sink in Ri when
VddL is assigned to all the switches in that path.

Given a routing tree with arbitrary topology and allocated slack
for each sink, we need to estimate the power reduction that can be
achieved. We use lik to represent the number of switches in the
path from the source to the kth sink in Ri. We first transform slack



Sik into sik, which is expressed in number of switches as follows.

sik =
Sik

Dik

· lik (3)

We then estimate the number of VddL switches that can be
achieved using sik. Let cij represent the load capacitance of the
jth switch in Ri, and Cik represent the total load capacitance of
the switches in the path from the source to the kth sink in Ri. We
define sink list SLij as the set of sinks in the fanout cone of the
jth switch in Ri. [3] presents the lower bound of the number of
VddL switches for the allocated slack in uniform length cases as

F low
n (i) =

Ns(i)−1
X

j=0

min(
sik

Cik

· cij : ∀k ∈ SLij) (4)

We find that F low
n (i) is not a lower bound in mixed length cases,

where the size of switches along a source-to-sink path may be
different. Figure 2 shows a source-to-sink path, which includes
two switches with different sizes. They need 1.5 and 0.5 slacks to
be powered by VddL, respectively. If we assign 1.9 slack in the
sink, F low

n (i) = 1.9 based on (4). However, when we perform
bottom-up Vdd assignment, the lower stream switch consumes 0.5
slack and there is 1.4 slack left for the upper stream switch, which
is not enough for it to be VddL. Therefore, we get only one VddL
switch with used slack of 0.5 instead of the estimated 1.9.

1.5 0.5

S=1.9

Figure 2: F low
n (i) in a mixed length case

We propose an upper bound F up
n (i) of VddL switch number in

Ri by summing up all sikcij/Cik in its fanout cone as the slack
distributed to the switch. It is expressed as

F up
n (i) =

Ns(i)−1
X

j=0

X

∀k∈SLij

sik

Cik

· cij (5)

We then estimate the power reduction for Ri. The upper bound
P up

dr (i) of dynamic power reduction of the tree Ri is estimated as
the sum of the dynamic power reduction of each switch in Ri and
can be expressed as

P up

dr (i) = 0.5fclk · ∆V dd2

Ns(i)−1
X

j=0

F up
n (i) · fs(i, j) · cij (6)

Similarly, the upper bound P up

lr (i) of leakage power reduction
of Ri is the sum of the leakage power reduction of each switch in
Ri and can be expressed as

Pup

lr (i) =

Ns(i)−1
X

j=0

F up
n (i) · ∆Ps(i, j) (7)

where ∆Ps(i, j) is the leakage power difference of the jth switch in
Ri between VddH and VddL. Wire segments with different lengths
are usually driven by switches with different sizes.

In the experiments, we find that the power estimation (4) de-
veloped in [3] does not work well in simultaneous retiming and
slack budgeting (Section 4). Note that the upper bound based esti-
mation gives more weight to the shared switches1, and the shared
1
A shared switch is a switch which has more than one sink in its

fanout cone

switches often have larger transit density than non-shared ones,
which means that more power gain can be obtained by assigning
the shared switches to VddL.

3.2 LP Problem Formulation
To formulate budgeting as a mathematical programming prob-

lem, we need to explicitly express the constraints and objective
function. In this problem, the timing constraints require that the
maximal arrival time at PO with respect to PI is at most Tspec,
i.e., for all paths from PI to PO, the sum of edge delays in each
path p must be at most Tspec. As the number of paths from PI

to PO can be exponential, the direct path-based formulation on
timing constraints is impractical for analysis and optimization. Al-
ternatively, we use the net-based formulation which partitions the
constraints on path delay into constraints on delay across circuit
elements or routing. Let a(v) be the arrival time for vertex v in G

and the timing constraints become

a(v) ≤ Tspec ∀v ∈ PO (8)

a(v) = 0 ∀v ∈ PI (9)

a(u) + d(u, v) ≤ a(v) ∀u ∈ V ∧ v ∈ FOu (10)

where V is the set of vertices in G, d(u, v) is the delay from vertex
u to v and FOu is the set of fanout vertices of u.

The objective function is to maximize the estimation of inter-
connect power reduction given by (6) and (7). It can be expressed
as

Maximize

Nr−1
X

i=0

0.5fclk∆V dd2F up
n (i)fs(i, j)cij

+

Nr−1
X

i=0

Fup
n (i)∆Ps(i, j) (11)

We then modify the timing constraints (10) as follows. For the
edges corresponding to routing in G, the constraints considering
slack can be expressed as

Sik = a(pik) − a(pi0) − d(pi0, pik)

0 ≤ i < Nr ∧ ∀pik ∈ FOpi0 (12)

where vertex pi0 is the source of Ri in G, vertex pik is the kth sink
of Ri in G, Sik is the slack allocated to the kth sink in Ri and
d(pi0, pik) is the delay from pi0 to pik in Ri using VddH. For the
edges other than routing in G, the constraints can be expressed as

a(u)+d(u, v) ≤ a(v) ∀u ∈ V∧u /∈ SRC∧v ∈ FOu (13)

where SRC is a subset of V and gives the set of vertices corre-
sponding to routing tree sources.

We formulate the time slack allocation problem using objec-
tive function (11), slack upper bound constraints (2), and timing
constraints (8), (9), (12) and (13). It is easy to verify that all the
constraints are linear, and the objective function (11) is also linear.
Hence we have the following theorem.

Theorem 1. The time slack allocation problem is a linear pro-
gramming (LP) problem.

Time slack is allocated to each routing tree by solving the time
slack allocation problem. Then the net-level bottom-up assignment
and refinement from [3] are modified to consider mixed-length
interconnects and to leverage the allocated slack. Note that our
upper bound based power estimation may give an overestimation
of power reduction and the number of VddL switches, and the net-
level bottom-up Vdd assignment guarantees the legalization of final
solutions.



4. POST-LAYOUT RETIMING

4.1 Retiming and Delay Constraints
The MILP formulation for retiming synchronous circuits is orig-

inally presented in [11] to minimize clock period. We extend the
MILP formulation to consider interconnect delay and get the fol-
lowing theorem

Theorem 2. Let G = (V, E, d, w) be a synchronous circuit,
and let c be a positive real number. Then there exists a retiming r
of G such that Φ(Gr) ≤ c if and only if there exists an assignment
of real values a(v) and an integer value r(v) to each vertex v ∈ V
such that the following conditions are satisfied:

−a(v) ≤ − max
u∈Fanin(v)

d(u, v), ∀v ∈ V (14)

a(v) ≤ c, ∀v ∈ V (15)

r(u) − r(v) ≤ w(e), ∀e(u, v) ∈ E (16)

a(u) − a(v) ≤ −d(u, v), ∀e(u, v) s.t. r(u) − r(v) = w(e)
(17)

where Gr is the retimed circuit and Φ(Gr) is the clock period of
Gr .

Suppose R(v) = r(v) + a(v)/c, then the above retiming con-
straints can be re-written as

r(v) − R(v) ≤ − max
u∈Fanin(v)

d(u, v)/c, ∀v ∈ V (18)

R(v) − r(v) ≤ 1, ∀v ∈ V (19)

r(u) − r(v) ≤ w(e), ∀e(u, v) ∈ E (20)

R(u) − R(v) ≤ w(e) − d(u, v)/c, ∀e(u, v) ∈ E (21)

In the next two subsections, we propose additional constraints to
consider placement and FF binding constraints.

4.2 FF Number Constraints
SUBBLK_I P I N
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Figure 3: A dummy node to consider FF sharing

As described in Section 2.2, delay values are associated with
timing edges. An LC is then represented by several nodes and
edges in the retiming graph (see Figure 3). (A) connects the inputs
of the LUT to the output of the LC directly in the retiming graph, the
FF number on each of such edges may be different after retiming,
which leads to an illegal FF assignment in the FPGA as the FF
number in each input-output pair of an LC should be the same with
a legal retiming. To tackle this problem, we add a dummy FF node
to each LC (including the LC originally in combinational mode),
and constrain that FFs can only be inserted at edges from FF node to
LC output node as shown in (B). To ensure an LUT drives only FFs
within the same cluster after retiming, the total FFs used within one
cluster can not exceed the number of available FFs in the cluster.
Therefore, we have the following constraints

X

e(u,v)∈ECi

w(e) + r(v) − r(u) ≤ SCi, ∀Ci (22)

r(v) − r(u) = 0, ∀e(u, v) ∈ E/Eff (23)

where set Eff comprises all edges from FF nodes to LC output
nodes, set ECi comprises all Eff edges in cluster i, and SCi

denotes the FF number in cluster i.

4.3 Consider FF Delay
There are two runtime modes of an LC, i.e. combinational and

sequential modes. Figure 4 shows LC input delay (from LC input to
FF node) and LC output delay (from FF node to LC output). When
the LUT in an LC drives a least one FF, it runs in a sequential mode.
The LC input delay is Tseq in and its output delay is Tseq out.
Otherwise, it works in a combinational mode, and the LC input and
output delays are Tcomb and 0, respectively.

SUBBLK_I P I N  (A)
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SUBBLK_O P I NF F _N O D E

(A)

SUBBLK_I P I N
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SUBBLK_O P I NF F _N O D E

(B)
D e l a y  =  T_c o m b

D e l a y  =  0 D e l a y  =  T_s e q _o u t

D e l a y  =  T_s e q _i n

Figure 4: (a)Combinational mode of LC (b) Sequen-
tial mode of LC

Formally, suppose the LC input and output delay are Din and
Dout, respectively. Then we have

Din =



Tseq in, if w′(e) > 0
Tcomb, if w′(e) = 0

(24)

Dout =



Tseq out, if w′(e) > 0
0, if w′(e) = 0

(25)

where w′(e) = w(e) + r(v) − r(u) is the FF number in edge
e(u, v) after retiming [11].

We can write these as linear expressions as follows.

Tcomb ≤ Din ≤ Tseq in (26)

Din ≥ Tseq in · w′(e) (27)

0 ≤ Dout ≤ Tseq out (28)

Dout ≥ Tseq out · w
′(e) (29)

We incorporate these constraints into our MILP formulation, and
rewrite (18) and (21) for timing edges within an LC as follows.

r(v) − R(v) ≤ −Din,out/c, ∀e(u, v) ∈ Ein,out (30)

R(u) − R(v) ≤ w(e) − Din,out/c, ∀e(u, v) ∈ Ein,out (31)

where Ein and Eout are the LC input and LC output edge sets,
respectively.

4.4 Clock Period Minimization Retiming
[11] has proved that the minimal possible clock period is equal

to the delay of a certain path of the circuit, which enables us to find
the minimal clock period by performing binary search among all
path delay values. To test whether each potential clock period c is
feasible, we formulate the post-stage clock period minimization

retiming problem using a constant objective function, and retiming
and delay constraints (18), (19), (20), (21), (30), (31), and FF
number constraints (23), (22). It is easy to verify that all the
constraints are linear. Hence we have the following theorem.

Theorem 3. The post-stage clock period minimization re-

timing problem is a mixed integer linear programming (MILP)
problem.



4.5 Simultaneous Retiming and Budgeting
The following important observation enables us to consider time

slack explicitly in our formulation.

Observation 1. The real value a(v) assigned in node v
in Theorem 2 is its arrival time after retiming.

Based on this observation, the time slack in edge e(u, v) can be
expressed as

S(u, v) = a(v) − a(u) − d(u, v)

= [R(v) − R(u) + r(u) − r(v)] · c − d(u, v)(32)

Therefore, for the edges corresponding to routing in G, the con-
straints (12) considering slack can be rewritten as

Sik = [R(pik) − R(piO) + r(piO) − r(pik)] · c − d(pi0, pik)

0 ≤ i < Nr ∧ ∀pik ∈ FOpi0 (33)

If we substitute Sik in (3) with (33), and use the power estimation
(11) in Section 3 as the objective function, and employ all constraints
in the post-stage clock period minimization retiming problem

plus the slack bound constraints (2), we can consider timing and
slack budgeting simultaneously. It is easy to verify that all the
constraints and objective functions are linear. Hence we have the
following theorem.

Theorem 4. Thepost-stage simultaneous retiming and slack

budgeting problem is a mixed integer linear programming (MILP)
problem.

5. EXPERIMENTS AND DISCUSSION
We conduct the experiments on the 10 sequential circuits in the

MCNC benchmark [12]. We map them into a FPGA with LUT size
of 4 and cluster size of 10. We use the same Vdd-programmable
logic blocks and interconnects in [3], but with a mix of different
interconnect wire lengths. We use 60% length 4 wire and 40%
length 8 wire for better performance and area trade-off, as suggested
in [5]. We use 25x and 10x switches to drive length 8 and length
4 wires, respectively. The parameters of switches are extracted by
SPICE simulation. The unused interconnect switches are power-
gated in all cases. Similar to [13], we customize the FPGA chip
size for each benchmark circuit and use the smallest chip that fits
each benchmark. Considering the VddL/VddH ratio between 0.6
∼ 0.7 suggested in [14], we use 1.3v for VddH and 0.8v for VddL
in our experiments at 100nm technology node. We use mosek [15]
to solve the LP and MILP problem. The experimental data are
collected on a linux workstation with a 1.9GHz Xeon CPU and
2GB memory.

We first use VPR [16] for single-Vdd placement and routing.
Before applying retiming and budgeting algorithms to the Vdd-
programmable interconnects, a sensitivity based assignment [1] is
first performed to assign Vdd-levels for Vdd-programmable logic
blocks without performance loss2. After Vdd assignment for clus-
ters, we perform clock period minimization retiming followed by
slack budgeting and Vdd assignment, namely CRT+SB. Alter-
natively, we perform simultaneous retiming and slack budgeting
followed by Vdd assignment, namely RTSB, while keeping the
minimal clock period achieved by CRT+SB.

5.1 Experimental Results
We run our LP based budgeting algorithm presented in Section 3

for uniform length cases, and compare the results with [3], which
2
We do consider the fact that VddL logic blocks consume time slack.

is shown in Table 2. We find that our algorithm obtains similar
power and runtime as [3]. Table 3 shows the experimental results
for the LP based slack budgeting algorithm proposed in Section
3 for mixed-length interconnects. Column svdd shows the power
dissipation (10−3W) of the solutions produced by the algorithm
with single Vdd and power-gating. Columns under dual − V dd
show the the percentage of VddL switches (column V ddL), total
power dissipation (column power), power reduction (in parenthesis
under column power) on svdd, clock period (column clock in ns)
and the total runtime3 (column time in s). Our algorithm can
achieve 85% VddL assignment and 53% power reduction for mixed
length interconnect wire on average, respectively.

svdd [3] dual-Vdd
circuit power time power time
tseng 6.8 2.6(-62%) 17 2.6(-62%) 22
dsip 50.3 22.3(-56%) 32 22.3(-56%) 37
diffeq 5.4 2.1(-62%) 52 2.1(-62%) 55
s298 11.6 5.0(-57%) 83 5.0(-57%) 82

bigkey 50.4 26.1(-48%) 68 26.3(-48%) 68
elliptic 17.1 6.4(-63%) 185 6.4(-63%) 185
frisc 15.0 5.4(-64%) 297 5.4(-64%) 309

s38584.1 60.8 23.1(-62%) 345 23.1(-62%) 325
s38417 60.4 27.3(-55%) 609 27.4(-55%) 621
clma 79.0 33.6(-58%) 1934 33.7(-57%) 1973
ave 35.7 15.4(-59%) 363 15.4(-59%) 368

Table 2: Uniform-length slack budget

svdd dual-Vdd
Circuit Cluster# power VddL power clock time
tseng 131 10.2 96% 3.9(-62%) 13.1 32
dsip 162 111.4 72% 66.5(-40%) 6.2 44
diffeq 195 10.2 88% 4.0(-61%) 13.5 41
s298 256 23.3 83% 10.9(-53%) 24.3 96

bigkey 294 96.1 73% 57.9(-40%) 7.0 89
elliptic 421 35.9 90% 14.9(-58%) 17.3 229
frisc 595 29.6 98% 11.1(-63%) 23.7 479

s38584.1 704 121.1 92% 51.0(-58%) 11.9 421
s38417 847 125.8 82% 67.2(-47%) 15.7 709
clma 1358 155.4 75% 76.9(-51%) 23.2 2735
ave 496 77.7 85% 36.4(-53%) 15.5 488

Table 3: Mixed-length slack budget

Table 4 shows retiming results by CRT+SB and RTSB for
mixed-length interconnect, respectively. CRT+SB performs a
binary search to find the minimal clock period achieved by re-
timing (column clock). To control runtime in CRT+SB, we use
1%Tspec as the searching step, and search possible clock period
within [90%Tspec, Tspec], where Tspec is the clock period after LP
based slack budgeting, as we find that the clock period has been well
optimized in the post-layout stage. For RTSB, the percentage of
VddL switches, total power dissipation (10−3W) and power reduc-
tion (in the brackets) compared to CRT+SB are shown in Table 4.
The minimal clock periods by CRT+SB are also given in this table.
Note that RTSB can achieve up to 20% power reduction compared
to CRT+SB, while negligible power reduction is obtained overall,
as there is not much room left for retiming and further power re-
duction. In the next subsection, we propose an efficient design flow
for retiming and Vdd assignment in the post-layout stage based on
our experimental results.

Table 5 gives the runtime of RTSB and CRT+SB. For each of
the given clock periods, we only need to test the feasibility of the
MILP, which takes relatively shorter runtime than solving an MILP.
When a feasible minimal clock period is found, we solve the MILP.
Therefore, the total runtime for CRT+SB is longer than RTSB

on average, due to the cost of extra feasibility testing. The runtime
of RTSB is not consistently monotonic with respect to the size of
3
The total runtime includes the runtime consumed by the placement

and routing with VPR, slack budgeting and Vdd assignment.



the circuit, e.g. the runtime of frisc (595 CLBs) by RTSB is 3x
of s38417 (847 CLBs), as the runtime to solve a MILP problem is
sensitive to the structure of the problem.

5.2 Discussion and Overall Tool Flow
Figure 5 shows a clear view of the factors that influence the

gain of RTSB. The percentage power reduction before and after
refinement, and the percentage clock period reduction are shown in
this figure.

For each benchmark circuit, the improvement obtained by re-
timing is highly dependent on the distribution of the critical path.
We find that only the clock period of circuit tseng and bigkey can
be reduced by CRT+SB, which indicates that there is not much
room left for retiming in the post-stage optimization. Nevertheless,
RTSB can further reduce power while keeping the minimal clock
period. As mentioned in Section 3, a refinement process is per-
formed to leverage surplus time slack. The curve “power before
refinement” in Figure 5 shows the percentage of power reduction be-
fore refinement. We can achieve 8% power reduction on CRT+SB

before refinement. We also find that the power reduction by RTSB

is reduced due to refinement. Note that the slack values in our
formulation are continuous variables instead of discrete ones in re-
ality, which leads to some unusable slacks. The refinement assigns
VddL using available slack locally. After refinement, RTSB can
still achieve up to 20% more power savings (bigkey) compared to
CRT+SB.

We find from Table 4 and Figure 5 that VddL percentage and clock
period reduction by CRT+SB are good indicators for RTSB. For
those circuits which already have high VddL percentages, there is
not much room left for further power reduction. On the other hand,
RTSB is expected to achieve more power reduction if CRT+SB

can get more clock period reduction. Therefore, an efficient design
flow in post-layout Vdd assignment and retiming is as follows. We
perform CRT+SB. Then we only choose those circuits that get
relatively large clock period reduction and small VddL percentage
to perform RTSB. As mentioned in Section 3, RTSB may give an
overestimation of power reduction, and produces unusable slacks,
which may lead to even a greater power than CRT+SB (diffeq
and s38584.1 ). In these cases, we just keep the results produced
by CRT+SB.

CRT+SB RTSB
circuit VddL power clock VddL power
tseng 94% 4.6 13.0(-1%) 96% 4.5(-1%)
dsip 72% 66.5 6.2(0%) 71% 66.5(0%)
diffeq 88% 4.0 13.5(0%) 86% 4.1(1%)
s298 83% 10.9 24.3(0%) 83% 10.8(-1%)

bigkey 73% 57.8 6.8(-2%) 79% 46.1(-20%)
elliptic 90% 14.9 17.3(0%) 90% 14.9(0%)
frisc 98% 11.1 23.7(0%) 98% 11.1(0%)

s38584.1 92% 50.7 11.9(0%) 90% 51.0(1%)
s38417 82% 66.7 15.7(0%) 82% 66.1(-1%)
clma 75% 76.9 23.2(0%) 75% 74.4(-3%)

85% 36.4 15.5(-0.2%) 85% 34.9(-2%)

Table 4: Retiming for mixed-length interconnects

CRT+SB RTSB

circuit total binarySearch total

tseng 43 4 44
dsip 74 9 66
diffeq 192 124 85
s298 654 470 230

bigkey 302 77 254
elliptic 575 145 473
frisc 1286 171 2402

s38584 1072 193 1092
s38417 1687 1029 863
clma 9736 2427 8580

ave 1562 465 1409

Table 5: Runtime (seconds) for retiming algorithms

Figure 5: Power and clock period reduction

6. CONCLUSION
To reduce power in dual-Vdd FPGAs, we have presented a linear

programming (LP) based time slack allocation algorithm for mixed
interconnect wire lengths. Experiments show that our algorithm
obtains similar power and runtime as [3] for dual-Vdd uniform in-
terconnects, and reduces power by 53% compared to single-Vdd
mixed length interconnects. We have also proposed a simultaneous
retiming and slack budgeting formulation considering post-layout
constraints, and reduced up to 20% more power than retiming fol-
lowed by slack budgeting. Finally, we have proposed a runtime
efficient flow to apply simultaneous retiming and slack budgeting
only when it is necessary.
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