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ABSTRACT

Process variation affecting timing and power is an
important issue for modern integrated circuits in nanometer
technologies. FPGAs are similar to ASICs in their
susceptibility to these issues, but face unique challenges in
that critical paths are unknown at test time. This paper
presents the first in-depth study on applying statistical
timing analysis with cross-chip and on-chip variations to
speed-binning and guard-banding in FPGAs. Considering
the uniqueness of re-programmability in FPGAs, we
quantify the effects of timing-model with guard-banding
and speed-binning on statistical performance and timing
yield. We also develop a new variation aware placement,
which is the first statistical algorithm for FPGA layout and
reduces yield loss by 3.4X with guard-banding and 25X
with speed-binning for MCNC and QUIP designs.

1. INTRODUCTION

Modern VLSI designs see a large impact from process
variation as devices scale down to nanometer technologies.
As for ASIC circuits, FPGAs are subject to variations in the
operation of transistors comprising the logic functionality
and the switching muxes. This variation can be classified as
global, affecting all aspects of a given chip,
spatial/regional, affecting geographic areas of the chip, or
local, randomly affecting a transistor. Statistical static
timing analysis (SSTA) has been proposed recently in
[6][10] to analyze timing considering these variations.

FPGA architects are faced with a unique problem in that
the same timing model will be applied to thousands of
different designs, operating at unknown clock frequencies
and varied conditions. Chip-test must guarantee timing
operation of a device independent of the configuration. The
standard practice for timing models is to add guard-band to
account for process, voltage and temperature variation and
the unknown usage of the device. In the presence of on-
chip variation, any fixed timing model would be more
pessimistic for register setup on designs with long critical
paths, and more optimistic for designs with short critical
paths.  Guard-band can be arbitrarily conservative or
aggressive. On the other hand, an “advantage” that FPGAs
have for timing modeling under variability is that FPGAs
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are binned for speed-grades, which serve to isolate global
variation, and can be programmed repeatedly and

differently during timing chip-test.
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Fig. 1. Near-critical path analysis with variation and
normal distribution is assumed
With variation any near-critical paths may actually be
statistically critical. Criticality analyzed by static timing
analysis (STA) and optimized by placement is based on the
single longest path and ignores near-criticality. In Fig. 1,
the mean/expected arrival time for PO1 is 2.08ns (analyzed
by SSTA) while the nominal arrival time is 2ns. Near-
critical paths PI1->PO1 have 69% chance to be timing
critical while the static critical path (PI2->PO2) with
nominal delay 2.05ns only has a probability of 31% to be
timing critical with variation.
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Fig. 2. Comparison between uncertainty due to
interconnect estimation and process variation
For FPGAs, the dominant placement approach is the
timing-driven algorithm, 7-VPlace [S]. The interconnect
delay estimation in T-VPlace is based on 2-pin net routing
without congestion for each pair of locations. The actual



delay after routing may differ from the estimated delay in
placement, mainly due to the impact of congestion and
multi-pin  nets. This introduces interconnect delay
uncertainty in addition to process variation. Fig. 2
compares the probability density functions (PDFs) for post-
routing delay normalized to the estimated one in placement
and post-routing delay with process variation normalized to
the nominal one. As shown in this figure, more than 70% of
nets have an estimation error within 1% while the
normalized standard deviation is 6% due to process
variation. Process variation leads to a more significant
delay variance and needs to be considered in placement.

In this paper we study the timing and placement
considering process variation for FPGAs. We first discuss
the effects due to guard-banding and speed-binning. We
then present our new variation aware placement algorithm,
ST-VPlace, leveraging an SSTA engine. ST-VPlace applies
the same placement across chips. In order to quantify the
benefit of ST-VPlace, we use MCNC [7] and QUIP [8]
designs for evaluation purpose. ST-VPlace reduces yield
loss by 3.4X on average compared to T-VPlace. With
speed-binning, ST-VPlace reduces yield loss by up to 25X

on average. Both are measured at the same clock frequency.

ST-VPlace outperforms TV-Place statistically since SSTA
is more accurate than STA if variations are considered.

Due to the lack of non-proprietary information on
process variation and on FPGA vendor preferences for
speed-binning and yield/performance tradeoffs, we
parameterize variation, guard-banding values and speed-
binning in our models to analyze the issues qualitatively
and then apply various assumptions on the parameter
values to generate quantitative results. This is similar to,
for example, the 10% variation at 36 assumption in [9].

The rest of the paper is organized as follows. Section 2
presents the background on variation model and SSTA.
Section 3 models the effects due to guard-banding and
speed-binning. Section 4 presents our variation aware
placement algorithm. Section 5 gives experimental results
and we conclude in Section 6.

2. PRELIMINARIES
2.1 Variation Model
Delay of a circuit element (e.g. an LUT or a routing switch)
is a random variable with process variation. As in [6], delay
is modeled in a canonical first-order form as
AR, (¢Y)

n+l
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i=1

where a,is the nominal value, 4X; represents the variation
for each global source of variation X;, a; represents the
sensitivity to each global variation, 4R, is the variation of
an independent random variable R, from its mean value,
and a,,; is the sensitivity of R,. By scaling the sensitivities,
X; and R, can be assumed as standard Gaussian N(0, 1). AX;

and R, are assumed as a set of independent random
variables with principle component analysis (PCA) [10].
Although there are numerous sources of variation,
variations in lithographic effects affecting L,; and dopant
atoms in oxide layers affecting V,, are considered. To make
presentation simple, we denote the variation AL, and AV,
as L and V, respectively. As in [9], L and V can be
decomposed into local (L, V,) and global (L, V,)
components. The canonical first-order form then becomes

a=a,+cL, +c,V, +c L +c,V, (2)
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where 6., 01, 0y, and oy, are standard deviations for Lg, L;,
V, and V; respectively, and 4R, is the sum of two
independent standard Gaussians L/o;; and Vy/oy. SPICE
simulation is performed to get the sensitivity parameters c;
and ¢, for each type of circuit element. Based on (2), the
standard deviation of the circuit element delay is,

o, = \/(Clo-l/g )2 + (CZGVg )2 + (Clau)z +(c,0y )2 (3)

2.2 Statistical Static Timing Analysis
Statistical static timing analysis (SSTA) has recently been
proposed to analyze timing considering variation [6][10].
The probabilistic equivalents of the “max”, “min”, “add”
and “subtract” operations are involved in SSTA. With the
delay expressed in the canonical form, addition and
subtraction are performed easily [6]. The max or min of
two Gaussians is not a Gaussian. We resort to the method
in [11], which models the max of two Gaussians as a
Gaussian by matching the first two moments of the real
distribution. The max or min of two Gaussians is then
modeled in the canonical form, which allows us to
propagate the correlations due to global variation. With
forward and backward traversals of the timing graph, the
distribution of the arrival and requested arrival time for
each node, and the statistical criticality for each node and
edge can be calculated. The statistical criticality of a node
or an edge is defined as the probability that this node or
edge is timing critical. Given a cut-off delay T, the timing
yield is defined as the probability that the critical path delay
is no longer than T, considering variation. Given the
canonical form of the arrival time at the virtual sink, the
mean T, and standard deviation T, of circuit delay can be
calculated. With a cut-off delay T,,, the timing yield can
then be computed using cumulative density function (CDF)
of standard Gaussian as CDF((T,,,-T,)/T,).

3. GUARD-BANDING / SPEED-BINS

3.1 Effects of Guard-Banding
STA analyzes circuit timing based on constant delays.
Without performing SSTA, a guard-band is applied for
individual node to model uncertainty. The nominal delay of
a circuit element is measured with the nominal values of V,
and L,;. Given the sensitivity and variance of each variation



source, the standard deviation o can be obtained from (3).
The individual node delay with a nominal value y and
standard deviation ¢ is then modeled as a constant guard-
banded delay as u+co (e.g., u+4o as a guard-banded
longest delay and u-4¢ as a guard-banded minimum delay),
where co is the guard-band factor. The guard-banded
minimum delay is used in register hold time constraint and
is not considered in this paper. A more conservative or
aggressive guard-band would be to use, e.g., 5S¢ or 3¢
(trading performance for timing yield). With the constant
guard-banded delay for each circuit element, STA is
performed to obtain the guard-banded circuit delay, T,
The guard-band cost is defined as (T,.4/T,,m)-1, where
T 0 18 the circuit delay without guard-banding. For a given
factor co, the cost is the percentage of guard-banding
actually applied to the critical path, e.g. a nominal critical
path is 10ns, but with guard-banding is evaluated to 11ns,
thus giving a cost of 10%. With the delay distribution
analyzed by SSTA and the guard-banded delay 7,,, as the
cut-off delay, timing yield can then be calculated using
CDF of Gaussian to analyze the effect of guard-banding.

3.2 Effects of Speed-Binning
FPGAs, along with DSP processors, microprocessors and
some other logic chips, have long-used speed-binning or
speed-grading to handle global variation. The process of
speed-binning is to test each chip’s operational speed for a
given timing path and thus define a chip as “fast”,
“medium” or “slow”. While speed-binning is usually
performed by post-silicon measurement, timing analysis
considering speed-binning at the pre-silicon stage is
equivalent to modeling global variation as a truncated
Gaussian for each bin. We first model the set of global
variation Gaussians 4X; in (1) as a single standard Gaussian
4G, to analyze timing considering speed-binning. Using (2)
as an example, the delay of circuit element in the canonical
form can be expressed as
a=a,+0,AG,+0,AR, 4

0, =0, +(c,0,)° 0,=4(c,0,) +(c,0,)°

where 4G, is a standard Gaussian which models global
variation. Speed-binning does not effectively deal with
local variation. However to some extent local variation can
be tested and eliminated by testing multiple similar paths
across different placements on the test chip. Speed-binning
based on the average speed of tested paths is equivalent to
categorizing 4G, into different bins. Global variation 4G,
has a truncated Gaussian distribution arising from binning.
Fig. 3 shows an example, in which 4G, is categorized into
three bins as [-oo, -1], [-1, 1] and [1, 3]. All chips fell into
the fast bin have u-o, (u+0, for the medium bin and u+3a,
for the slow bin) as the delay for each circuit element in the
STA timing model. STA is then performed to obtain the
circuit delay, 7j;, for each bin. T};,, may be relaxed by y
(speed-bin relaxed factor) to achieve a lower yield loss.
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Fig. 3. Example of speed-binning for global variation

Speed-binning is effective to isolate global variation.
However, the unique challenge in FPGAs is that the
functionality is unknown, which may result in yield loss
even with binning. The yield loss with speed-binning
comes from two sources, the failure due to the ignored
local variation and the correlation of global variation. Fig.
4(a) shows the effect of local variation. The arrival time
distribution of PO is a sum of truncated global Gaussian
and local Gaussian. The chips with global variable 4G,
close to the truncated border may have a larger chance to
fail affected by local variation. Fig. 4(b) shows the failure
due to correlation of global variation. No local variation is
assumed for simplicity. Edge e/ and e2 are Gaussian
distributed as Ins+N(Ons, 0.1ns) and Ins+N(Ons, 0.3ns),
respectively. 4G, in [- oo, 0] is categorized into the fast bin
(shaded in the figure). 7j;, of the shaded bin is max(1ns,
1ns) = 1ns. However, the arrival time distribution of PO
given by SSTA is max(el, e2) as 1.08ns+N(Ons, 0.21ns).
The increased mean delay is due to the fact that the mean of
a set of random variables may be larger than the maximum
mean of these variables. The chips operated between 1ns
and 1.08ns fall into the shaded bin but fail to meet the
expected timing specification T;,.
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Fig. 4. Illustration of yield loss with speed-binning

To analytically calculate the timing yield with speed-
binning, we first perform SSTA and obtain circuit delay
distribution in canonical form as 7,+07,4G,+on4R,, where
or, and op are the standard deviation due to global and
local variation respectively. Given a specific bin k that
categorizes 4G, into [G"(k), G'(k)] and relaxed cut-off
delay yTy;.(k), the timing yield for bin k is as

Gk _
[m,,(k) (1, +0,,AG,) J w6, ®

timing_yield(k) = j pdf(AG,) cdf

G (k) n

The rationale is that given a fixed 4G, with probability
of pdfiAG,), the probability that T,+0,,4G,+0p4R, meet



the cut-off delay yTy;,(k) is CDF(yTyu(k)-(T,+07,4G)/on).
The overall timing yield for n bins are then expressed as
timing _ yield = f timing _ vyield (k) ©)

where the n bin is assumed as the “dead” (too slow) bin
and is discarded (required to avoid infinite delay).

4. VARIATION AWARE PLACEMENT
For FPGAs, the dominant placement is simulated annealing
as in the timing-driven algorithm 7-VPlace [5] in VPR [4].
Here we present a new variation aware timing-driven
algorithm, ST-VPlace, to optimize timing statistically and
maximize timing yield.

4.1 Timing-Driven Placement T-VPlace
Simulated annealing is a heuristic and iterative algorithm in
which moves (swaps of logic cells) are accepted or rejected
based on a cost function and annealing temperature. T-
VPlace considers both wiring and timing costs. Wiring cost
is expressed as

Wiri _Nm\ . . . (7)
iring _Cost = Zq(z)[bb‘_(t)+bbv(t)]
i=1

where N, is the number of nets in the circuit. The cost of
net i is determined by its horizontal and vertical spans,
bb(i) and bb,(i). Scaling factor g(i) compensates for multi-
terminal nets.

Timing cannot be optimized explicitly since it is too
expensive to perform a timing analysis after each move.
The timing cost is a heuristic and based on static criticality
of each edge (i, j), the delay of each edge d(i, j) and
criticality exponent . The timing cost of edge (i, j) and for
the placement solution are as

Timing _ Cost(i, j) = d(i, j) ® criticality(i, j)* 8)
criticality(i, j) =1—slack(i, j)/ D,

max

Timing _ Cost = ZTiming _Cost (i, ) ®
ij

where d(i, j) is obtained from the delay lookup matrix
and the current placement, D, is the critical path delay,
and slack is the amount of delay that can be added to
routing edge (i ,j) without increasing the critical path delay.
Both D, and slack are calculated by STA, which is
performed once at every annealing temperature. The
criticality exponent S is used to control the relative
importance of connections with different criticalities.

The overall cost function is then shown in (10), where A
is a trade-off variable between timing and wiring cost.
Previous timing and previous wiring cost are updated once
every temperature. The temperature and AC are used to
decide whether a move is to be accepted or rejected. It was
shown in [5] that f=8 and 1=0.5 give the best timing and
wiring trade-off.

ATiming Cost AWiring _ Cost (10)

Previous_Wiring_Cost

AC=21

+(1=2)

Previous_Timing_Cost

4.2 Variation Aware Placement ST-VPlace
Timing yield depends on both of the mean and variance of
circuit delay. Under presence of variation, any near-critical
path may actually be statistically critical. However, the cost
function of T-VPlace may not optimize the timing yield,
and further cannot see the effect of near-critical paths as
per the discussion of Fig. 1. To make placement variation
aware, we introduce the concept of statistical criticality and
develop a new algorithm, S7-VPlace (see Fig. 5), to
optimize timing yield considering variation.

InitPlacementTemperatureRlimit(&S, &T, &Rlimit);
ComputeDelayVarianceMatrix();
while (ExitCriterion () == False) { /* “Outer loop” */
SSTA();
Previous_Wiring_Cost =Wiring_Cost(S);
Previous_STiming_Cost = STiming_Cost(S);
while (InnerLoopCriterion () == False) { /* “Inner loop” */
Snew = GenerateViaMove (S, Rlimit);
ASTiming_Cost=STiming_Cost(Snew)-
STiming_Cost(S);
AWiring_Cost=Wiring_Cost(Snew) -Wiring_Cost(S);
AC =\-(ASTiming_Cost/Prev_STiming_Cost) +
(1-1)-(AWiring_Cost/Previous_Wiring_Cost);
if (AC<0) {
S = Snew /* Move is good, accept */

}

else {
r = random (0,1);
if (r < e

S = Snew; /* Move is bad, accept anyway */
}
} /* End “inner loop” */
UpdateTempRIimit(&T, &Rlimit);
} /* End “outer loop” */

Fig. 5. Overall algorithm of ST-VPlace

There are three main differences between ST-VPlace and
T-VPlace. Firstly, in addition to the delay matrix, we
calculate a delay variance matrix for each pair of locations
for clusters and input/output pads. First-order canonical
form is pre-characterized for all circuit elements uvsing
SPICE. The canonical form for delay of a routing path is
then calculated by performing statistical addition for the
interconnect switches in that path. Secondly, given the
delay and variance for each edge, SSTA instead of STA is
performed at each temperature to obtain the statistical
criticality for each edge. For simplicity, we implement the
block-based SSTA from [6] with statistical criticality
calculation for each edge. Spatial variation is not
considered but can however been easily modeled with PCA
[10]. Finally, instead of using the static timing cost function
in (8), we define the statistical timing cost function for each
routing edge (i, j) and a placement solution as

STiming _Cost(i, j) =d# (i, j) ® SCriticality(i, j)g (11)
STiming _Cost = ZSTiming_ Cost(i, )

ij



where d,(i, j) is the nominal delay for each edge (i, j) and
SCriticality(i, j) is the statistical criticality, i.e., the
probability that edge (i, j) is in critical path. SCriticality(i,
j) is updated at each new annealing temperature using
SSTA. Statistical criticality exponent, 6, is a constant
parameter. We experimentally tune € to be 0.3 to obtain the
minimum mean and standard deviation of circuit delay. We
use the same wiring cost in (7) and 4 of 0.5 for the same
timing and wiring trade-off in ST-VPlace. The same
annealing scheme in T-VPlace is also adopted in ST-
VPlace. The goal of ST-VPlace is to perform placement
considering variations and to optimize for the maximum
probabilistic timing yield leveraging the back-end SSTA.

5. EXPERIMENTAL RESULTS

In this section, we conduct the experiments on the largest
MCNC [7] and QUIP [8] designs. We use Berkeley
predictive device model [2] at ITRS [3] 65nm technology
node. Suggested in [9] for higher yield, we use the min-ED
(energy-delay product) device setting (V= 0.9v and Vy, =
0.3v). An island style FPGA architecture resembling
Altera’s Stratix device [1] with 10 4-LUT clusters and 60%
length-4 and 40% length-8 wires is used. T-VPlace [5]
serves as the baseline. 1.2X of minimum routing channel
width obtained by T-VPlace is used for each design in both
placers. The same timing-driven router is performed for
two placers and delay is analyzed after routing. We also
assume a variation in each of L,,and Vy;, of 10% at 3¢ (i.e.
a 99.73% chance that variation is within +/- 10% deviated
from the nominal value) for both global and local variation
unless specified otherwise.

We first compare the yield loss between ST-VPlace and
T-VPlace using the same cut-off delay as 3¢ guard-banded
delay in T-VPlace. We then compare the two algorithms
with guard-banding and speed-binning.

51 Comparing ST-VPlace and T-VPlace
We compare ST-VPlace and T-VPlace in Table 1. The
geometric mean is shown for the aggregate 20 MCNC and
20 QUIP designs along with 6 representative individual
designs. Column 2 presents the number of clusters for each
design. Columns 3-5 present the results obtained by T-
VPlace, where “Tnorm” is the nominal delay given by STA,
“Tgrd” is the 30 guard-banded delay, and “YLgrd” is the
yield loss using “Tgrd” as the cut-off delay analyzed by
SSTA. The yield loss is defined as the number of parts that
fail to meet the timing requirement out of 10,000 parts, in
short, parts per 10K (pp10K). On average, when evaluating
with 30 guard-banded delay, the yield loss for MCNC,
QUIP and overall designs are 7.24, 1.42 and 3.20 ppl10OK
respectively. Columns 6-10 present the results achieved by
ST-VPlace. “Tmean” and “Tsigma” are the mean and
standard deviation of circuit delay obtained by SSTA. “T'st-
v’ represents the delay when holding the same yield loss
with T-VPlace as in column 5 (“YLgrd”). On average, ST-
VPlace reduces the delay by 4% (up to 12%), 2% (up to

5.4%) and 3% for MCNC, QUIP and overall designs.
“YLst-v” represents the yield loss with ST-VPlace when
using the same cut-off delay of T-VPlace as in column 4
(“Tgrd”). On average, ST-VPlace reduces yield loss by 5X
(up to 323X), 2.2X (up to 8.4X) and 3.4X for MCNC,
QUIP and overall design set, respectively. Though not
shown in the table, the wire length overhead of ST-VPlace
is negligible (less than 1%) compared to T-VPlace.

Column 10 presents the runtime of ST-VPlace
normalized to T-VPlace. The block-based SSTA is linear
time complexity of O(kn) where k is number of global
variation sources. Since SSTA is only performed once at
every annealing temperature, the average complexity of
SSTA() (see Fig. 5) is O(1). ST-VPlace has the same
average complexity of O(n*?) as T-VPlace. ST-VPlace
consumes an average of 1.29X, 1.51X and 1.40X runtime
for MCNC, QUIP and overall designs, respectively.

ST-VPlace reduces both the mean value and the variance
compared to T-VPlace. Fig. 6 presents the mean and
standard deviation of circuit delay obtained by ST-VPlace
for the overall 40 designs. Each is normalized to its
counterpart in T-VPlace. As shown in this figure, ST-
VPlace consistently reduces the mean delay for all designs
and standard deviation of delay for most designs, which in
turn provides a higher yield than T-VPlace does. Note that
ST-VPlace achieves slightly larger standard deviation for
some designs. It is due to the heuristic cost function in ST-
VPlace. On average, ST-VPlace reduces the mean delay by
4.2%, 2.5% and 3.3%, and reduces the standard deviation
of delay by 3.5%, 1.4% and 2.5% for MCNC, QUIP and

overall design suite.
1.05

1.00 -

0.95
0.90 7
0.85

0.80

-8-normalized Tmean (ST-VPlace) |
-=-normalized Tsigma (ST-VPlace)

1 35 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39
MCNC & QUIP Designs
Fig. 6. Normalized mean and standard deviation of

circuit delay obtained by ST-VPlace

0.20 1

-5 Statistical Criticality vs
4 0.18

Static Criticality

< Statistical Criticality vs

Static Criticality
o 0.16

ty)
[
H

0.12 4
0.10

stical Criticall

0.08 - 8 114X
5 0.06 1 b3
8 0.04 227X
0.02 1
0.0 T & - - | 0.00 |
0.0 0.2 0.8 1.0 0.32 0.34 0.4 0.42

0.4 0.6 036 038
(Static Criticality)"8 (Static Criticality)A8

(a)

Fig. 7. Statistical criticality versus static criticality



1 2 3 [ 4 ] 5 6 7 ] 8 | 9 [ 10
circuit # of T-VPlace ST-VPlace
clusters Tnorm Tgrd YLgrd Tmean Tsigma Tst-v (ns) YLst-v (pp10K) runtime
(ns) (s) | (pplOK) (ns) (ns)
apex2 213 22.19 32.04 10.84 19.76 2.73 28.13 (-12.22%) 0.03 (322.71X) 1.37X
clma 1358 38.05 56.05 6.09 35.26 4.90 51.10 (-8.83%) 0.11 (55.63X) 1.26X
$38584 704 20.14 32.04 2.56 19.50 3.16 30.49 (-4.84%) 0.37 (6.97X) 1.27X
pdc 568 25.34 36.49 7.78 25.14 3.14 35.08 (-3.87%) 1.50 (5.17X) 1.11X
$38417 847 24.32 38.35 4.62 24.78 3.81 37.42 (-2.42%) 1.88 (2.46X) 1.27X
seq 198 16.83 24.34 8.89 17.08 2.32 24.33 (-0.04%) 8.76 (1.02X) 1.51X
Geo. (MCNC) 296 21.65 32.35 7.24 21.32 3.04 31.06 (-4.00%) 1.42 (5.09X) 1.29X
oc_des des3area 115 32.40 51.39 3.23 31.10 5.14 48.61 (-5.41%) 0.39 (8.38X) 1.14X
oc_wb_dma 577 20.60 32.31 2.11 19.85 3.12 30.85 (-4.52%) 0.32 (6.50X) 1.42X
oc_des perf opt 534 10.70 17.01 3.10 11.13 1.62 16.67 (-2.01%) 1.39 (2.22X) 1.58X
oc_cordic_p2r 282 22.44 39.03 0.37 22.51 4.00 38.33 (-1.81%) 0.18 (2.12X) 1.45X
oc_mem_ctrl 446 22.40 38.37 1.31 23.18 4.01 37.82 (-1.45%) 0.76 (1.73X) 1.52X
idea_parallel 534 69.36 117.85 0.98 71.20 12.40 117.40 (-0.38%) 0.85 (1.16X) 1.44X
Geo. (QUIP) 150 21.05 34.87 142 21.27 3.55 34.16 (-2.03%) 0.64 (2.23X) 1.51X
Geo. (ALL) | 189 | 21.35 | 33.59 | 320 | 21.29 3.28 | 32.57 (-3.02%) | 0.95 (3.37X) 1.40X
Table 1. Comparison between ST-VPlace and T-VPlace
Variation (3sigma) global 0% local 5% Variation (3sigma) global 0% local 10% Variation (3sigma) global 0% local 20%
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?; a0 1100 23 0% T100 23 0% 100 2
s /o Ba % 2 s % z
S 0% \B{ L0 56 20% | lio £8 20% V tio ¥
0% T i 0.1 0% . . 0.1 0% “ . . 0.1
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Guard-band factor Guard-band factor Guard-band factor
Variation (3sigma) global 5% local 5% Variation (3sigma) global 10% local 10% Variation (3sigma) global 20% local 20%
120% - 100000  120% —e—guard-band cost | 10000.0 120% 10000.0
o | e S L N = T -Vplace yied lost T .
5 100% —8— STV-Place yield lost - 1000.0 5 55 100% ] —B-ST-VPlace yield lost| 10000 ¢ 5; 100% -\g\\ﬁ / + 10000 &
& 80% 28 80% 28 so0% 2
° T1000 272 +1000 22 +1000 &
S 60% 28 60% 28 60% @
° 0% T 100 ;ﬁ’!! 0% T 100 gé 0% T 100 ;ﬁ’
3 o 23 g3 \ 3
© 20% - t1o =9 20% A t10 >© 20% /—0— uard-band cost 710 >
——T-Vplace yield lost
0% ; ; ; 0.1 0% ; ; ; R 0% —#-ST-VPlacéyieldlost | | 44

0

1 2 3 4
Guard-band factor

0

1 2 3
Guard-band factor

4

0

1 2 3
Guard-band factor

Fig. 8. Guard-band cost and yield loss comparison under different variation assumptions
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With variation, the static criticality analyzed by STA
may not reflect how critical the near-critical path is. Fig. 7
compares the static criticality defined in (8) and the
statistical criticality analyzed by SSTA for design apex2 in
T-VPlace. The statistical criticality does not increase
monotonically with static criticality (see Fig. 7(a)), i.e., a
larger static criticality does not necessarily lead to a larger
probability that this edge is timing critical with variation.
As shown in Fig. 7(b), the statistical criticality may vary
significantly with a same static criticality (up to 227X).
Since ST-VPlace considers statistical criticality explicitly,
it optimizes the near-critical paths with variation.

5.2 Effect of Guard-Banding
Without SSTA, a guard-band is applied for individual
nodes to model uncertainty. A larger guard-band factor
leads to a larger guard-band cost (defined in Section 3.1)

but a smaller yield loss. For instance, the nominal delay
from LUT-A input to output is 551ps with a standard
deviation of 110ps under 10%/10% global/local variation.
The standard deviation becomes 25ps and 221ps under
0%/5% and 20%/20% variation respectively.

Fig. 8 presents the cost with different guard-band factors
under various variation assumptions. The cost and yield
loss in pplOK are the arithmetic and geometric means for
all designs, respectively. The cost ranges from 20% to
100% with guard-band factor of 3¢ under different
variation assumption. When there is no global variation, the
yield loss of T-VPlace drops from more than 5000 ppl10K
with no guard-banding to 1 ppl10K with guard-band factor
of lo. It is due to the fact that long switching paths are
present in FPGA and dampen the local variation. When
both global and local variations are present, around 10



pp10K may still fail even with a guard-band factor of 30. It
is due to the fact that global variation affects all circuit
elements on chip and the variation is aggregated in a long
path. Note that in either case (with and without global
variation), the yield loss does not depend on variation
significantly but only on guard-band factor since a larger
variation leads to a larger guard-banded delay. This
correlation results in a relatively stable yield loss with a
constant guard-band factor.

Compared to T-VPlace, ST-VPlace always obtains a
smaller yield loss with different guard-band factors and
various variation assumptions. When only local variation is
present, ST-VPlace reduces yield loss by around one
magnitude (e.g. from 1 to 0.1 pplOK with guard-band
factor of 30). With both global and local variations, the
gain of ST-VPlace increases with larger guard-band factor
under the same variation assumption (e.g. from 1000 to 500
ppl10K with guard-band factor of 1¢ but from 10 to 0.5
pplOK with guard-band factor of 3¢ under 5%/5%
variation) and decreases with the same guard-band factor
but under larger variation (e.g. with guard-band factor of 3,
from 10 to 0.5 pp10K under 5%/5% variation but from 5 to
1 pp1OK under 20%/20% variation).

53 Effect of Speed-Binning
In practice, speed-binning is used to handle global variation
in FPGAs. We arbitrarily generate the bins such that the
“fast”, “medium” and “slow” bins contain 40%, 30% and
29.999% chips, respectively. The slowest 0.001% (or
0.1pp10K) chips are discarded.
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Fig. 9. Comparison of yield loss between ST-VPlace and
T-VPlace considering speed-binning effect

Fig. 9 compares the overall yield loss in pp10K given by
ST-VPlace and T-VPlace with different speed-bin relaxed
factors (Section 3.2). 10% at 30 is assumed for both global
and local variation. Timing yield is analytically calculated
from (6). When the cut-off delay of each bin is not relaxed,
on average 1565 chips fail to meet timing uwsing T-VPlace.
The yield loss is due to the ignored local variation and the
correlation of global variation as discussed in Section 3.2.
When cut-off delays are relaxed by 5% (y=1.05), the yield
loss reduces to 45 pp10K. With the same cut-off delay, the
yield loss of ST-VPlace is reduced to 1.8 ppl0OK (or 25X

reduction). ST-VPlace always achieves a lower yield loss
with different relaxed factors. With sufficiently large
relaxed factor, the yield loss of ST-VPlace and T-VPlace
tends to be 0.1 pp10K since we always discard the slowest
0.1 pplOK. Overall, ST-VPlace reduces yield loss by 10X
in the presence of speed-binning, effectively reducing the
need for relaxation factors.

6. CONCLUSIONS AND DISCUSSIONS

In this paper, we have quantified the effect of timing-
models with guard-banding and speed-binning on statistical
performance and timing yield of FPGAs for future process
generations with large on-chip variation. We have
developed an analytical timing yield model for the
truncated Gaussian distribution for global variation arising
from speed-binning. We have also offered a new variation
aware placement algorithm, ST-VPlace. Using the the same
cut-off delay as 30 guard-banded delay in T-VPlace, ST-
VPlace reduces the average yield loss by 3.4X compared to
T-VPlace. With the effect of speed-binning, ST-VPlace
reduces the average yield loss by up to 25X at the same
performance. Though not done here, ST-VPlace can be
applied with spatial correlated variation model.

In the future, we will study the FPGA timing with non-
Gaussian variation and spatial correlated variation. To
make the work more directly applicable, it would be useful
to perform device-specific transistor parameterization (e.g.
on L) as would be done on more sensitive transistors of a
commercial FPGA to minimize variation (rather than the
general single variation model).
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