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ABSTRACT 
This paper presents an efficient approach t o  perform global 
interconnect sizing and spacing (GISS) for multiple nets to 
minimize interconnect delays with consideration of coupling 
capacitance, in addition to area and fringing capacitances. 
We introduce the formulation of symmetric and asymmetric 
wire sizing and spacing. We prove two important results on 
the symmetric and asymmetric eflective-fringing properties 
which lead to  a very effective bound computation algorithm 
t o  compute the upper and lower bounds of the optimal wire 
sizing and spacing solution for all nets under consideration. 
Our experiments show that  in most cases the upper and 
lower bounds meet quickly after a few iterations and we ac- 
tually obtain the optimal solution. To our knowledge, this 
is the first in-depth study of global wire sizing and spac- 
ing for multiple nets with consideration of coupling capac- 
itance. Experimental results show that  our GISS solutions 
lead to  substantial delay reduction than existing single net 
wire-sizing solutions without consideration of coupling ca- 
pacitance. 

1. INTRODUCTION 
Since the formulation of the optimal wire-sizing problem [l], 
there have been extensive studies in recent years on optimal 
wire-sizing algorithm. Most early works used Elmore delay 
model [2] for interconnects and study the discrete wire siz- 
ing [I, 3,4]  and continuous wire shaping or sizing [5 ,  61. The  
wire-sizing problem is also studied under high-order delay 
model in [i', 81. A comprehensive survey of these optimiza- 
tion techniques can be found in [9]. These works showed 
that  significant delay reduction can be  achieved by optimal 
wire-sizing in submicron designs. However, none of them 
explicitly considered the coupling capacitance. 

As VLSI technology continues t o  push toward deep sub- 
micron, the coupling capacitance between adjacent wires 
has become the dominating component in the total inter- 
connect capacitance, due t o  the decreasing spacing between 
adjacent wires and the increasing wire aspect ratio for deep 
submicron processes. Therefore, it is unlikely that  an opti- 
mal wire-sizing solution which considers only the area and 
fringing capacitances would remain optimal when the cou- 
pling capacitance is considered. 

High coupling capacitance in deep submicron design re- 
sults in both noise (capacitive crosstalk) and additional de- 
lay. In this paper, we study the global interconnect sizing 
and spacing (GISS) problem for delay minimization with 
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consideration of the coupling capacitance, in addition to 
the area and fringing capacitances. In Section 2, we in- 
troduce the problem formulation for symmetric and asym- 
metric wire sizing and spacing for both single and multiple 
nets. In Section 3, we present a dynamic programming 
based algorithm for single net optimization. Then in Sec- 
tion 4, we reveal two eflective-fringing properties for both 
symmetric and asymmetric wire-sizing, and propose a very 
efficient bound computation algorithm t o  compute the u p  
per and lower bounds of the optimal wire sizing and spac- 
ing solution for all nets, not just  one net, under consid- 
eration. Experimental results in Section 5 show that  the 
algorithm often leads to identical lower and upper bounds, 
and therefore achieves optimal solutions. It gives substan- 
tial improvement over the single net wire-sizing algorithm 
without coupling capacitance consideration. Discussion and 
Future work will be given in Section 6. 

2. PROBLEM FORMULATION 
2.1. Symmetric and Asymmetric Wire Sizing 
Given a layout of n nets, denoted Ni for i = l...n. Net 
N; consists of n, + 1 terminals {s;,..., s;,} connected by 
a routing tree, denoted 2';. si is the source of Mi, and the 
driver D; a t  the source has an effective output  resistance 
of Ri. The rest of the terminals are sinks. T h e  terminals 
(source and sinks) of Ti are at fixed locations, and Ti con- 
sists of mi wire segments denoted by { E ; ,  . . . , EA, }. The 
center-line of a wire segment divides the  original wire seg- 
ment evenly. In Figure I(a), for example, two horizontal 
wire segments E1 and E2 are shown with their center-lines. 
We assume that  the center-line for each wire segment is 
fixed during wire sizing and spacing. 

Each wire segment has a set of discrete choices of wire 
widths {WI = Wminr W2,.-.,  Wr}. We use W E  to  denote 
the width of the wire segment E. All previous works implic- 
itly assumed symmetric wire-sizing, which widens or nar- 
rows each wire segment in a symmetric way above and be- 
low the center-line of the original wire segment. An example 
of symmetric wire-sizing of the two wire segments E1 and 
E2 with a neighboring net is shown in Figure l (b) .  

However, symmetric wire-sizing may be too restrictive 
for interconnect sizing and spacing, especially when cou- 
pling capacitance is considered. In this paper, we propose 
an asymmetric wire-sizing scheme where we may widen or 
narrow above and below the center-line of the  original wire 
segment asymmetrically. Using the  same example as in Fig- 
ure I(b), we would like E1 to be farther away from its neigh- 
boring wire. As a result, we grow only the bottom half of 
the wire segment, keeping the top half intact, as shown in 
Figure l(c). Let wh ( w ; )  represent the  width of the wire 
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(a) Wire segments with center-lines 

\ 
(c) AsymmeUic wire-sizing 

F i g u r e  1. (a)  W i r e  segments w i t h  center-lines. (b) 
S y m m e t r i c  wire-sizing. (e)  A s y m m e t r i c  wire-sizing. 

below (above) a horizontal line segment. The new wire 
width is defined as W E  = W L  + w L .  An asymmetric wire- 
sizing solution is valid if w i  > Wm,, /2  and wL > W,,,,,/2. 
Note that for symmetric wire-sizing, wk = w; = W E / 2 .  To 
avoid introducing additional notation, we also use wk and 
w; to  denote the asymmetric wire widths for the left and 
right parts of a vertical wire segment, respectively. 

2.2. Interconnect S i z i n g  and Spacing for Single 

Given a layout of n routing trees T,'s, the interconnect siz- 
ing and spacing problem for a single net is to  find a symmet- 
ric wire assignment W = { w E i , .  . , wEL,  } or an asymmet- 

Net 

ric wire assignment w = {wE:  = (d;, w f  .), . .., wEj = 

(w' . , wT . )}  for a routing tree of interest, say T,, in order 
E; "' j  

E L ;  E L ;  

to  optimize ihe  following weighted delay objective (as used 
in [l]) with consideration of the area, fringing and coupling 
capacitances: 

mi 

k = l  

where X i  is the criticality of sink s i  in net N,, and 
t ~ ,  ( s i ,  W )  is the sink delay with wire-sizing solution W .  

We model the routing tree of each net by an RC tree and 
use the distributed Elmore delay model [2] to  measure the 
interconnect delays. The  formulations used in this section 
are similar t o  those in [l]. For clarity of presentation, we 
assume that  a uniform grid structure is superimposed on the 
routing plane, and each wire segment in the routing plane is 
divided into a sequence of wires of unit length. Nonetheless, 
the results presented in this paper can be extended easily t o  
the case where the wire segments are of non-uniform lengths 
in the same way as in [l]. 

Assume that  the sheet resistance is r ,  the unit wire area 
capacitance coefficient co, the  unit wire fringing capacitance 
coefficient c f ,  and the unit wire lateral capacitance cti, then 
the wire resistance T E  and wire capacitance C E  for any grid 
edge E can be written as follows: 

and 7 1 
3-E = - C E  = C, . W E  + ~f + c , ~ ( w E ,  sE, SE) 

W E  

Note that  cII(wE,sk,sL) depends on the spacings sk and 
SE between E and its lower and upper (or left and right) 

neighboring wire segments, respectively, whereas ca and c f  
are assumed constants depending only the technology '. 

Note that we focus on the objective of minimizing the 
weighted sum of sink delays as in [l]. A previous work [lo] 
showed that by assigning appropriate criticality/weight of 
each sink based on Lagrangian relaxation, the weighted-sum 
formulation can be used iteratively to meet the required 
arrival times. 

2.3. Global Interconnect S i z i n g  and Spacing for 
M u l t i p l e  Nets 

In the global interconnect sizing and spacing problem for 
multiple nets, again, we assume that an initial layout 
of n routing trees T,'s is given. With consideration of 
the area, fringing and coupling capacitances, the GISS 
problem for multiple nets is to  find a symmetric wire 
assignment W = { W E ; ,  . . . , " E t ,  , . . . , W E ; ,  . ' e ,   WE;^ } 
or an asymmetric wiire assignment W = { w  1 - 

El  - 
( w ; ; , w : ; ) ~ * ' * ~  w 1 = (wEkl ,WEkl)r"'WE; 1 1 = 

( w & ,  w E ; ) ,  1 . . . , W E & ,  == (w;;,  , w;,., ) }  for all T,'s such 
Em 1 

that, the summation of the weighted performance measure 
of all nets, i.e., 

n 

3=1 

is minimized, where 6, indicates the criticality of net 3. 

2.4. 2D C a p a c i t a n c e  Model 
A table-based 2.5D caloacitance model suitable for lay- 
out optimization was presented in [ll] recently, where the 
lumped capacitance for a wire contains the  following com- 
ponents: area and fringing capacitances, lateral coupling 
capacitance, and cross-over and cross-under capacitances. 
Based on this model, we consider only area, fringing and 
lateral coupling capacitances in this paper, since they are 
the major part of the lumped capacitance. T h a t  is, we use 
a 2D capacitance model simplified from the original 2.5D 
model. We first use 3D field solver to  build tables for area, 
fringing and lateral coupling capacitances under different 
width and spacing combinations. During layout optimiza- 
tion, we generate area, fringing and lateral coupling capac- 
itances from prebuilt tables. Details and justification of 
this method can be found in [ll]. 

3. O P T I M A L  S I Z I N G  AND SPACING FOR 
SINGLE NET 

The optimal wire sizing and spacing problem for a single 
net with fixed surroundiing wire segments can be  solved by 
adapting the bottom-up dynamic programming(DP)-based 
buffer insertion and wire-sizing algorithm proposed by [3]. 
Note that  in [3], the objective function is to minimize the 
maximum delay or to  meet arrival time requirements, while 

'In fact, in deep sub.micron designs, ca and cf are no 
longer constants. Their values depend on the width and spac- 
ings. A more general notation should be c ~ ( w E , J ~ , s E )  and 
c f ( w E ,  s k ,  3;). our GISS algorithm for singlenet optimization 
(Section 3) is able to handle this general capacitancemodel. The 
optimality of our bound computation algorithm for multiple nets 
(Section 4), however, assumes that both ca and CY are constants. 
Its extension for more general 2D capacitance model is discussed 
in Section 4.3. 
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our objective is to  minimize the weighted sum of all sink de- 
lays, which is similar to  that  in [12]. The major differences 
of the bottom-up dynamic programming part between this 
paper and [12] are: (1) we include lateral coupling capaci- 
tance between neighboring wires for delay calculation; (2) 
for the more general asymmetric wire sizing and spacing for- 
mulation, we keep two-piece (wk and w k )  information for 
each grid edge while performing bottom-up accumulation 
and topdown pruning. Other details about the DP-based 
algorithm can be found in [3] and [12]. 

The single net wire-sizing and spacing can be used for 
the post-layout optimization for a single critical net (e.g., 
the clock net). However, this optimization will largely de- 
pend on the previous layout of other neighboring nets. And 
also since many critical nets may share the limited routing 
resource, just optimizing one net may indeed sacrifice the 
performance of other critical nets. In the next section, we 
will look into the global layout optimization for multiple 
nets. 

4. G L O B A L  INTERCONNECT S I Z I N G  AND 

The difficulty of the GISS problem for multiple nets arises 
from the fact that  the lateral coupling capacitance coeffi- 
cient for each wire segment changes with the width and 
spacings. Moreover, there is no closed form representa- 
tion for lateral coupling capacitance. T h e  key to solving 
the multiple-net wire sizing and spacing problem is the 
effective-fringing property of wire-sizing solutions under dif- 
ferent spacing conditions. The beauty of this property is 
that  we are able to  reduce the GISS problem with vari- 
able lateral coupling capacitance t o  an optimal wire-sizing 
problem with consideration of only constant area capaci- 
tance coefficient and different effective-fringing capacitance 
coefficients for different wire segments. Such a reduction 
allows us to  compute global upper and lower bounds of the 
optimal wire sizing and spacing solution for all nets. In 
the following, we first s ta te  the  symmetric and asymmetric 
effective-fringing properties and discuss their implications. 
Then, we will describe the bound computation algorithm, 
followed by a refinement algorithm to obtain the final global 
interconnect sizing and spacing solution when the lower and 
upper bounds computed as above d o  not meet. Extensions 
t o  more general 2D capacitance models will then be dis- 
cussed. 

4.1. Effective-Fringing Property: Theorems and 

First, we consider the case of symmetric GISS. We define 
the dominance relation between symmetric wire-sizing s e  
lutions of a routing tree in  t h e  same way as in [I]: 

Def in i t ion  1 Symmetric Dominance Relation: Given 
two wire width assignments W and W', let W E  be the width 
assignment of edge E in W and w& be the wire width of 
E in W'. Then, W dominates W' (W 2 W')  if for any 
segment E ,  W E  2 w h .  

In the following, we consider an optimization problem 
called optimal wire-sizing under variable effective-fringing 
coeficients (OWS-EF). While we still assume a constant 
area capacitance coefficient ca, we now define for each 
wire segment E the eflective-fringing capacitance coeficient 
c e f ( E )  = c f  + c ~ ~ ( w E , s ~ , s ~ )  which incorporates the lat- 
eral coupling capacitance. I t  shall be clear later on that this 
set of effective-fringing capacitance coefficients for all edges 

SPACING FOR MULTIPLE NETS 

I m p l i c a t i o n s  

allows us to  capture the lateral coupling capacitance effec- 
tively. The  performance measure that  we aim a t  optimizing 
for OWS-EF problem is the same as in Eqn. (1) except that 
c f  is replaced by c e f ( E )  and c3i disappears. Let Cef denote 
the set of effective-fringing capacitance coefficients c e f (  E ) %  
for all edges in T.  We define Cef  2 Cif if c e f ( E )  2 c : , ( E )  
for every E in T.  Then the symmetric effective-fringing 
property can be stated as follows: 

Theorem 1 S y m m e t r i c  Effect ive-Fringing Property: 
For the same routing tree T and a constant e,, let 
W ( c , ,  C e f )  be an optimal wire-sizing solution to the 0 WS- 
EF problem under a set of uariable eflectiue-fringing capac- 
itance coefficients C,f = { c , f ( E )  1 E E T } ,  and W ( c , , C ; , )  
be an optimal sizing solution under a different set ofClf = 
{ c : , ( E )  I E E T } .  Then C,f 2 Cif implies that &(c,,C,,) 
dominates &(c,, CAf). 

The 
theorem can be used very effectively t o  determine the upper 
and lower bounds of the original optimal GISS problem. 
Suppose W' denotes the global optimal wire-sizing solution 
optimizing t ~ .  Let SI' and St' denote the spacing obtained 
based on W',  and cz i (w&,  s g ,  3:) be the lateral coupling 
capacitance coefficient for each edge E based on W', SI', 
and St*. Let WLU and W f U  be upper bounds of W" and 
Wt', and SLL and STL be lower bounds of Si' and St*, 
respectively. Then c , ~ ( w ; ,  sbL, sg) 2 cz1(2uk, sg, sg), as 
the lateral coupling capacitance coefficient decreases when 
the width of E decreases and the spacings between E and 
its neighbors increases. 

Now consider two instances of the OWS-EF problem. In 
the first instance, the effective-fringing capacitance coef- 
ficient of edge E is c , f ( E )  = c f  + c z ~ ( w ~ , s ~ , s ~ ) .  In 
the  second instance, the effective-fringing capacitance coef- 
ficient of edge E is c L f ( E )  = c f  + czi(w&, s c ,  3:). Clearly, 
Cef 2 From the symmetric effective-fringing property, 
the optimal solution &(c,, C e r j  dominates the optimal so- 
lution &(c,, Cif). Note that W ( c a ,  CLf) = w'. Therefore, 
f i ( c a , C e f )  is also an upper bound of the optimal solution 
W'. This procedure can be applied to  compute wire width 
upper bounds (equivalently, lower bounds of spacings) for 
all nets. 

Similarly, suppose we are given a lower bound of the 
optimal wire-sizing solution, denoted WL. From WL, we 
can calculate a spacing upper bound S". Now, apply- 
ing the  optimization process for the OWS-EF problem as 
in the above discussion, w ( c a , C e f )  will be dominated by 
-PV(Ca,C:f) = W', since Cef 5 Cif. In other words, we have 
computed a lower bound of the optimal solution. 

Definition 2 Asymmetric Dominance Relation: 
Given two wire width assignments W = ( W l ,  W') and 
W /  = (W", Wf'), let W E  = ( w k ,  W E )  be the width assign- 
ment of edge E in W and w k  = ( w ;  , W L  ) be the wire width 
of E in W'. Then, W dominates W' i f fo r  any segment E,  
wk 2 wi'  and w k  2 w;' for any edge E ,  respectively. 

Then, the  asymmetric effective-fringing property can be 
stated as follows: 

Theorem 2 Asymmetric Effective-Fringing Prop 
erty: For the same routing tree and a constant ca t  let 

T h e  proof of this theorem can be found a t  [13]. 

For asymmetric GISS, we can define 

' /  

630 



* r ( c a ,  C , f ,  W l )  be a n  optimal asymmetric wire-sizing so- 
lution to the OCVS-EF problem with a fixed w' and a 
set of effective-fringing capacitance coeficients C,f , and 
h r ( c a , C : , ,  W") be an optimal sizing solution under an- 
other .fixed W" and a different set of C:f. Then, W1 > 
W" and C,f 2 C:, imply W T ( c , , C e j ,  W ' )  dominates 
W T ( c a , C : f ,  ~ 1 ' ) .  

Again, the proof of this theorem can be found at  
[13]. We can also apply the asymmetric effective-fringing 
property to compute global upper and lower bounds of 
the optimal wire sizing and spacing solution by solving 
asymmetric OWS-EF problem. From an upper bound 
( W L U ,  WTU), we can again compute lower bound spacings 
SI' and S T L ,  and set of lateral coupling capacitance coef- 
ficients c z l ( ( w i U ,  wk'), SF, s g ) ? s .  Similarly, we can com- 
pute another set of lateral coupling capacitance coefficients, 
c s l ( ( w c ,  w c ) ,  3;, 3 g ) ' s  from an optimal wire-sizing solu- 
tion W *  = ( W ~ * , Y V ~ * )  . 

We denote c , f ( E )  = c f  + czl((wh', wk'), sk', sg) and 
c & ( E )  = c f  + c s l ( ( w ~ , w ~ ) , s ~ , s ~ )  as before. By the 
asymmetric effective-fringing property, W ( c a ,  ~ , f ,  W")  
dominates &itf(ca,Cg,,W1*) = WT*; and therefore, it is 
still an upper bound of W'*, the  optimal wire-sizing for the 
top or right portion of each edge. Similar argument applies 
for the lower bounds and for the bottom (or left) portion of 
each edge. 

4.2. Algorithm for Upper and Lower Bound Com- 
putation 

The effective-fringing properties (both symmetric and 
asymmetric) lead to  a very effective algorithm to compute 
the upper and lower bounds of the  optimal wire sizing and 
spacing solution for all nets under consideration. T h e  fol- 
lowing presentation considers asymmetric wire sizing and 
spacing in general. Symmetric wire sizing and spacing can 
be achieved by simply enforcing wk = w ;  for all edges. 

Upper Bound Computation 
i c 0  
(Wb( i ) ,  WA(i)) c Initialize Wire Width Upper Bound 
do 
c'( i )  c Compute Lateral Coefficient(W&(i), WA(i))U . 

W&(i  + 1) c DPW(WA(i),ceuf(i)) /* for all nets */ 
C:'(i) c Compute Lateral Coefficient(Wb(i + I), ~2:)) 
~ f , ' ( i )  c Compute Effective-Fringing Coefficient(CZf ( i ) )  
~ i ( i  + 1) c DPW(W~(~ + I),c$'(~)) /* for all nets */ 
i c i + l  

Ce,(;) 8 '  c Compute Effective-Fringing Coefficient(Czl(r)) 

while ( W / r ( i ) , W / I ( i ) )  # (W/,(i - l),W,',(i - 1)) 

Figure 2. Algorithm to compute an upper bound of 
the global optimal wiresizing. 

T h e  algorithm to compute an upper bound of the optimal 
solution is illustrated in Figure 2. The  algorithm starts a t  
the iteration i = 0. First we initialize upper bounds of all 
wire widths specified by the  layout constraints. A sample 
initialization is shown in Figure 3. Let El and E,  be two 
parallel horizontal edges, with E1 below E,. Let Wmin be 

d = center-line distance 
max-wihhfor wfE, = w 1  I E" 

I center-line 

min-spacing 

mm width 

Figure 3. Initialization of upper-bound wire widths. 

the minimum wire width, and S,,, be the minimum spac- 
ing between two parallel wires from the layout constraints. 
If the distance between the center-lines of El and E ,  is d, 
then the maximum width (i.e., the initial upper bound) for 
w i t  (the side closer t o  E,) and wb" (the side closer to  El)  

From the upper bound (Wh, Wh) ,  we compute the up- 
per bound effective-fringing capacitance coefficients. Again, 
consider El and E,  whiich are of distance d .  Let wky be 
the width of El in WA, and w k -  the width of E ,  in W&. 
If d - tu;: - why < S,,,, then, the upper bound wire 
widths overlap and we assign the lower bound spacing be- 
tween El and E, t o  b'e Sm:,, i.e., s L ~  = SL: = Smsn. 
Otherwise, the lower bound spacings s g  and SE are 
d - wLy - w k t .  Similarly, for El and its lower neigh- 
bor we compute si:. From SE and si:, we can com- 
pute csl((wLy,  w L y ) , s i : ,  3;:). Let C: denote such set 
of lateral coupling cap%citance coefficients obtained from 
(Wb, WA). We then compute the effective-fringing coeffi- 
cient c e f ( E l )  = c f  + c Z l ( ( w i . ,  wLy), s y ,  3:). Similarly we 
can calculate the upper bound c e f ( E , ) .  We refer to  the set 
of upper bound c , ~  ( E )  for all edges based on C: as C;. 

We then perform the following iterative process to  update 
the wire width upper bounds. Tocompute W h ( i + l ) ,  we a p  
ply the bottom-up dynamic programming-based wire-sizing 
(DPW) algorithm outlined in Section 3 to  each net with 
fixed WA(i) and C,uf(i), without explicitly dealing with lat- 
eral coupling capacitance. Then, we can similarly compute 
WA(i+l )  for each net using WA(;), and updated W b ( i + l )  
and Crf'(i). The process is iterated until (Wb(i),  W$(i))  is 
identical to  ( W h ( i  + l ) ,  Wh(i + 1 ) ) .  

For the lower bound computation, we start with the min- 
imum allowable width for each wire (Wi(O),WL(O)), and 
compute C,L,(O), a set of lateral capacitance coefficients ob- 
tained under lower bound wire widths. Subsequently Ctf(0) 
is computed from C:f(0)i. Then, we apply the iterative pro- 
cess as in the upper bound computation. 

Our experiments show that  in  most cases, the lower and 
upper bounds computed as above will meet after a few itera- 
tions and we actually obtain the optimal solution from the 
bound computations. When the upper and lower bounds 
do not meet, we wil l  use the following refinement algo- 
rithm to obtain the fin.al wire sizing and spacing solution 
for each net: We first take the lower bound of each side 

is d - Wm,,/2 - Smsn. 
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for each wire segment as our initial layout. Then we will 
iteratively perform single net wire sizing and spacing opti- 
mization method presented in Section 3 to  obtain the final 
GISS solution following the order of each net’s priority. We 
call the overall bound computations and final refinement al- 
gorithm GISS/FAF, where FAF denotes the fixed area and 
fringing capacitance coefficients. 

4.3. E x t e n s i o n  to Var iab le  Area and F r i n g i n g  Ca- 
p a c i t a n c e  Coeff ic ients  

The  optimality of bound computation in the above 
GISS/FAF algorithm is based on the effective-fringing p r o p  
erties which assume the area capacitance coefficient c, and 
the fringing capacitance coefficient C J  are constants inde- 
pendent of wire widths and spacings. However, in deep 
submicron designs, ca and c/ are dependent on wire widths 
and spacings (e.g., there are about 30% variations on ca 
and CJ values in our 2D capacitance tables). Nevertheless, 
the GISS algorithm can still be used in this case simply 
by computing the area and fringing capacitances from the 
general 2D model directly during the bottom u p  dynamic 
programming optimization. However, the effective-fringing 
properties cannot be used to  guarantee that  the optimal 
solution is always within the upper and lower bounds com- 
puted by the GISS algorithm. We call the algorithm using 
variable c ,  and C J ’ S  as GISS/VAF. Experimental results in 
Section 5.2 show that GISS/VAF often achieves better re- 
sults when compared with GISS/FAF. 

5. EXPERIMENTAL RESULTS 
We have implemented GISS using C++ under the Sun 
SPARC station environment. In this section, we present 
the experimental results. The  parameters used in our ex- 
periments are based on the 0.18pm technology specified in 
the  SIA roadmap [14]. The  sheet resistance is 0.0638 Q / O .  
T h e  minimum wire sizing W,,, is 0.22pm and minimum 
spacing S,,, between neighboring wires is 0 .33pm.  Then, 
pitch spacing, defined as the sum of minimum spacing and 
minimum wire size, is equal to  0.55pm. T h e  allowable wire 
widths for each side along the center line are from 0.11 to  
1.1 pm, with the incremental s tep t o  be 0.11 pm. The area, 
fringing and lateral coupling capacitances are obtained by 
a look-up table obtained through the 2D capacitance ex- 
traction model [ll]. The  driver effective resistance is 119 
R. The input capacitance for each sink is set t o  be 12.OfF. 

5.1. O p t i m a l  S i z i n g  and Spacing for a Single Net 
We perform experiments for the optimal single-net sizing 
and spacing algorithm on 5 nets provided by Intel. T h e  
routing trees are the same as used in [4]. These trees orig- 
inally have multiple sources and we randomly assign one 
as the  unique single source. We assign equal criticality for 
each sink so the  weighted delay becomes the  average delay. 
Given the initial layout of these five nets, we randomly as- 
sign some surrounding wire segments with spacing from the 
net being 1 t o  5 x pitch. 

In Table 1, we summarize the average and maximum 
HSPICE delays from different algorithms: minimum wire 
sizing (MIN); symmetric optimal wire-sizing (OWS-S) al- 
gorithm without considering the coupling capacitance (but 
coupling capacitance through the 2D model is included in 
its final HSPICE simulation); symmetric GISS algorithm 
(GISS-S) and asymmetric GISS algorithm (GISS-A). In the 
parentheses under OWS-S, GISS-S and GISS-A, we list the 
percentage of improvement over MIN. From the table, we 

can see that GISS-A consistently outperforms all other algo- 
rithms. In terms of its average delay, which is our objective 
function, the reduction is up  to  52.4% compared with the 
MIN solution (Net4), and 29.4% with OWS-S (Nets) and 
29.4% with GISS-S (Nets). 

Although the average delay is our objective, experimen- 
tal results show that  this formulation reduces the maximum 
delays as well. From the table, we can see that GISS-A out- 
perform MIN, OWS-S and GISS-S by up  to 45.2% (Net2), 
21.2% and 22.0% (Net5) compared with MIN, OWS-S and 
GISS-S respectively. 

5.2. O p t i m a l  S i z i n g  and Spacing for M u l t i p l e  Nets 
To demonstrate the effectiveness of GISS algorithm] we 

perform experiments for global optimal wire sizing and 
spacing for multiple nets on a 16-bit parallel bus structure 
of 10 mm long with the center distance between adjacent 
bus line set to  be {2] 3, 4, 5, 6)xpatch respectively. 

In Table 2, we give the average delays (maximum delays 
are the same due to  the symmetry of the bus structure) from 
HSPICE simulations and normalized wire widths (ratio of 
average wire size to  W,,,,,). We still list in the parentheses 
the percentage of delay reduction over MIN. In the table, 
column GISS/FAF uses the GISS algorithm with fixed c, 
and c j  (obtained through the 2D table-look-up with 3. W,,, 
width and 5 .  S,,, spacing) to guide the layout optimiza- 
tion, whereas GISS/VAF directly uses the 2D model with 
variable area and fringing capacitance coefficients during 
the layout optimization. All these algorithms use the 2D 
model for final HSPICE simulations. 

We observe that  the upper and lower bounds often meet 
quickly after just a few iterations for both GISS/FAF 
and GISS/VAF. For GISS/FAF, from the effective fring- 
ing property, we indeed obtain the optimal solution under 
the given constant c, and c j .  

From the table, we can see tha t  the average delays of 
GISS/FAF outperform those of MIN by up to  56.6%, and 
outperform those of OWS by u p  to  43.4% respectively. Al- 
though GISS/VAF cannot guarantee optimality, our exper- 
iments do show that  it outperforms GISS/FAF by up to  
26.9%. This is due to  that: (i) ca and c j  are no longer con- 
stants for deep submicron design, (ii) we use the 2D model 
with variable c ,  and c f ’ s  for both HSPICE simulations, 
which GISS/VAF also uses during GISS optimization. It 
actually suggests that  our GISS algorithm may indeed have 
the capability t o  handle more general capacitance models. 

The normalized width from GISS is larger than that  from 
OWS since the effective fringing capacitance coefficients for 
GISS are larger than those for OWS, which confirms our 
effective-fringing properties. 

6. DISCUSSIONS AND FUTURE WORK 
Our study has shown convincingly that  it is very important 
to  consider coupling capacitance into VLSI interconnect o p  
timization for deep submicron designs. We have proposed 
two general formulations, symmetric and asymmetric, for 
the global interconnect sizing and spacing problem and re- 
vealed the effective-fringing properties for both symmetric 
and asymmetric scenarios. We develop an effective algo- 
rithm to compute the lower and upper bounds for the global 
optimal sizing and spacing solution. Our experiments show 
that in most cases, the upper and lower bounds meet in a 
few iterations so we will get the  optimal GISS solution for 
fixed area and fringing capacitance coefficients. 

We prove the effective-fringing properties and derive the 
GISS algorithm under the assumption of fixed ca and c f .  
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GISS-S 
0.13 (-0.00%) 
0.19 (-38.7%) 
0.66 (-18.5%) 
0.33 (-41.1%) 
3.14 (-10.8%) 

GISS-A 
0.13 (-0.00%) 
0.17 (-45.2%) 
0.64 (-21.0%) 
0.31 (-44.6%) 
2.45 (-30.4%) 

Our experiments indeed show that it is also very effective 
under variable ca and cl’s. It suggests that  the GISS algo- 
rithm actually have the capability to  handle more general 
capacitance models. Further validation is planned as a fu- 
ture work. 

An alternative for computing lower and upper bounds 
is to  use the local refinement method based on dominance 
property similar to  those used in [l, 12, 151. In particular, 
the GISS problem under variable ca and CI’S may be formu- 
lated as a general CH-posynomial program [15]. Therefore, 
a local refinement based algorithm similar to  that  used in 
[15] may be used to  compute the lower and upper bounds 
of the global optimal solution under variable ca and cf’s. 
According; to  our experience, the local refinement based al- 
gorithm can be much faster than the dynamic-programming 
based algorithm used in this paper. We plan to  implement 
it in the future. Also, we plan to  develop efficient noise 
models and extend our GISS algorithm for noise control 
and minimization. 
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