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ABSTRACT
To reduce FPGA power, a linear programming (LP) based
time slack allocation algorithm, EdTLC-LP, has been pro-
posed recently for Vdd-programmable interconnects without
using Vdd-level converters for mixed wire lengths. However,
it takes a long time to solve the LP problem for time slack
allocation. In this paper, we develop EdTLC-NW, a slack al-
location algorithm based on min-cost network flow to reduce
runtime. Compared to single Vdd FPGA with power-gating,
EdTLC-LP and EdTLC-NW reduce interconnect power by
52.71% and 52.52%, respectively. EdTLC-NW achieves as
good results as EdTLC-LP but runs 8X faster on average.
Furthermore, the speedup increases for larger circuits and
EdTLC-NW is 20X faster for the largest circuit.
Categories and Subject Descriptors: B.7.2 [Integrated
Circuits]: Design aids
General Terms: Algorithms, Design
Keywords: Low power, time slack, FPGA

1. INTRODUCTION
FPGA power modeling and reduction has become an ac-

tive research area recently. [1, 2] present power evaluation
frameworks for generic parameterized FPGA architectures,
and show that both interconnect and leakage power are sig-
nificant for nanometer FPGAs. [3] studies the interaction
of a suite of power-aware FPGA CAD algorithms without
changing the existing FPGAs. [4] proposes a configura-
tion inversion method to reduce leakage power of multi-
plexers. In addition, dual-Vdd and Vdd programmability
have been applied to FPGA to reduce power. [5, 6] are the
first work introducing dual-Vdd and field programmability
of Vdd to FPGA. Vdd programmability has been applied to
both FPGA logic blocks [5, 6] and interconnects [7, 8, 9].

A Vdd-level converter is needed when a low-Vdd (VddL)
circuit elements drives a high-Vdd (VddH) circuit element
to avoid excessive leakage. [8] inserts a level converter in
front of each interconnect switch to provide the fine-grained
Vdd programmability for interconnects. However, it has
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been shown in [10] that this fine-grained Vdd-level converter
insertion may introduce large leakage and area overhead.
Recently, a few approaches have been presented without
directly using level converters in Vdd-programmable inter-
connects. [9] uses the positive feedback PMOS transistor
in the level-restore buffer as an alternative level converter
with much reduced area and power overhead. [7] enforces
that all the routing trees driven by (driving) a logic block
have the same Vdd-level as the source (sink) logic block
when level converters are inserted at CLB inputs (outputs).
[11] uses a smaller granularity, a routing tree, as the unit
in Vdd-level assignment. [10] further allows a mix of Vdd-
levels within a routing tree, but only VddH switches can
drive VddL switches. [12] extends the algorithms in [10] for
mixed interconnect wire lengths.

In this paper, we use the same circuit design from [10, 12]
and aim to improve the linear programming (LP) based time
slack allocation algorithm, EdTLC-LP. In EdTLC-LP, time
slack is allocated to each routing tree by formulating the
problem as an LP problem to minimize power. However,
it takes unacceptable runtime for EdTLC-LP to solve the
LP problem for time slack allocation (more than 10 hours
for the largest circuit clma on a 1.9GHz Xeon machine).
Our contribution is to formulate the time slack allocation
problem as a min-cost network flow problem and present a
new algorithm, EdTLC-NW , which significantly reduces the
run-time. Using single-Vdd FPGA with power-gating as the
baseline, EdTLC-LP and EdTLC-NW reduce interconnect
power by 52.71% and 52.52%, respectively. EdTLC-NW
achieves as good results as EdTLC-LP but runs 8X faster
on average. Furthermore, the speedup increases for larger
circuits and EdTLC-NW achieves up to 20X speedup in
overall runtime.

The rest of the paper is organized as follows. Section 2
introduces background and modeling. Section 3 reviews the
LP based budgeting. Section 4 describes netflow based bud-
geting for interconnects with mixed wire lengths. Section 5
discusses the experimental results. Section 6 concludes this
paper.

2. PRELIMINARIES
2.1 Delay and Power Modeling with Dual-Vdd

To make the presentation simple, we summarize the no-
tations frequently used in this paper in Table 1. They will
be explained in detail when first used.

A directed acyclic timing graph G(V, E) [13] is constructed
to model the circuit for timing analysis. The Elmore delay
model is used to calculate the routing delay. We define the



G(V, E) timing graph
PI set of all primary inputs and register outputs
PO set of all primary outputs and register inputs
FOv set of all fanout vertices of vertex v in G

SRC set of vertices corresponding to routing tree sources

Ri ith routing tree in FPGA

FOij set of fanout switches of jth switch in Ri

SLij set of sinks in the fanout cone of jth switch in Ri

a(v) arrival time of vertex v in G

d(u, v) delay from vertex u to vertex v in G

Nr total number (#) of routing trees in FPGA

cij load capacitance of jth switch in Ri

lik # of switches in the path from source to kth sink in Ri

Sik allocated slack for kth sink in Ri

pi0 vertex in G corresponding to the source of Ri

pik vertex in G corresponding to kth sink of Ri

fs(i, j) transition density of jth switch in Ri

Nk(i) # of sinks in Ri

Ns(i) total # of switches in Ri

Nl(i) # of VddL switches in Ri

Fn(i) estimated # of VddL switches in Ri

Wik power weight associated with kth sink in Ri

wik power weight associated with e(i, j) in G

Table 1: Notations frequently used in this paper

fanout cone of a switch as the sub-tree of the routing tree
rooted at the switch. Dynamic power occurs when a signal
transition happens at the gate output. Although timing
change may change the transition density, we assume that
the transition density for an interconnect switch will not
change when VddL is used. Let vij indicate Vdd-level of jth

switch in Ri as follows

vij =
n

1 if Vdd-level of jth switch in Ri is VddH

0 if Vdd-level of jth switch in Ri is VddL

The interconnect power reduction Pr using programmable
dual-Vdd can be expressed as

Pr =

Nr−1
X

i=0

Ns(i)−1
X

j=0

(1 − vij )(0.5fclkfs(i, j)cij∆V dd
2 + ∆Ps(i, j))

(1)

which is the sum of dynamic and leakage power reduction.
Nr is the total number of routing trees, fs(i, j) is the tran-
sition density of jth switch in ith routing tree Ri, Ns(i) is
the number of switches in Ri, and ∆Ps(i, j) and cij are the
leakage power reduction and load capacitance of each switch,
respectively.

Dual-Vdd tree based level converter insertion [10, 12] is
used in this paper. A mix of Vdd-levels within one routing
tree is allowed, and the Vdd-level constraints are

vik ≤ vij 0 ≤ i < Nr ∧ 0 ≤ j < Ns(i) ∧ k ∈ FOij (2)

i.e., no VddL switch should drive VddH switches. FOij

gives the set of fanout switches of jth switch in Ri.

3. LINEAR PROGRAMMING BASED
BUDGETING

In this section, we review the LP based time slack al-
location algorithm, EdTLC-LP, for mixed interconnect wire
lengths [12]. Time slack is first allocated to each routing tree
by formulating the problem as an LP problem considering
the load capacitance of each switch explicitly. A bottom-up
assignment algorithm is then performed to achieve the opti-
mal solution within each routing tree for the allocated time
slack. A refinement step is finally performed to leverage
surplus time slack.

3.1 Estimation of Interconnect Power
Reduction

Estimating power reduction given the allocated slack is
the key for the LP and netflow based algorithms. There
is an upper bound for slack, which is the delay increase
when VddL is assigned to all the switches in a tree. Clearly,
slack more than the upper bound cannot lead to more VddL
switches. The slack upper bound constraints can be ex-
pressed as

0 ≤ Sik ≤ Dik 0 ≤ i < Nr ∧ 1 ≤ k ≤ Nk(i) (3)

where Nk(i) is the number of sinks in Ri and Dik is the
delay increase of the path from the source to kth sink in Ri

when VddL is assigned to all the switches in that path.
Let lik represent the number of switches in the path from

the source to the kth sink in Ri. Slack Sik is first trans-
formed into sik, which is expressed in number of switches as
follows,

sik =
Sik

Dik

· lik (4)

Let cij represent the load capacitance of the jth switch in Ri.
Let Cik represent the total load capacitance of the switches
in the path from the source to the kth sink in Ri. Sink list
SLij is defined as the set of sinks in the fanout cone of the
jth switch in Ri. The number of VddL switches given the
allocated slack is then estimated as

Fn(i) =

Ns(i)−1
X

j=0

min(
sik

Cik

· cij : ∀k ∈ SLij) (5)

The rationale is that we consider kth sink with minimum
sikcij/Cik in sink list SLij as the most critical sink to jth

switch in Ri.
The dynamic/leakage power reduction of the tree Ri is es-

timated as the sum of the dynamic/leakage power reduction
of each switch in Ri and can be expressed as,

Pdr(i) = 0.5fclk ·∆V dd
2

Ns(i)−1
X

j=0

[min(
sik

Cik

· cij : ∀k ∈ SLij ) · fs(i, j) · cij ]

(6)

Plr(i) =

Ns(i)−1
X

j=0

[min(
sik

Cik

· cij : ∀k ∈ SLij ) · ∆Ps(i, j)] (7)

where ∆Ps(i, j) is the leakage power difference of jth switch
in Ri between VddH and VddL. Wire segments with differ-
ent lengths might be driven by switches with different sizes.

3.2 LP Problem Formulation
Similar to [10], the net-based formulation is used, which

partitions the constraints on path delay into constraints on
delay across circuit elements or routing. Let a(v) be the
arrival time for vertex v in G and the timing constraints
become

a(v) ≤ Tspec ∀v ∈ PO (8)

a(v) = 0 ∀v ∈ PI (9)

a(u) + d(u, v) ≤ a(v) ∀u ∈ V ∧ v ∈ FOu (10)

where V is the set of vertices in G, d(u, v) is the delay from
vertex u to v and FOu is the set of fanout vertices of u.

The objective is to maximize interconnect power reduction
given by the sum of (6) and (7). To incorporate them into
mathematical programming, we introduce a variable fn(i, j)
for jth switch in Ri and some additional constraints. The



new objective function after transformation plus the addi-
tional constraints can be expressed as

Maximize

Nr−1
X

i=0

0.5fclk∆V dd2

Ns(i)−1
X

j=0

fn(i, j)fs(i, j)cij

+

Nr−1
X

i=0

Ns(i)−1
X

j=0

fn(i, j)∆Ps(i, j) (11)

s.t.

fn(i, j) ≤
sik

Cik

cij 0 ≤ i < Nr ∧ 0 ≤ j < Ns(i) ∧ ∀k ∈ SLij (12)

The timing constraints (10) is then modified as follows.
For the edges corresponding to routing in G, the constraints
considering slack can be expressed as

a(pi0) + d(pi0, pik) + Sik ≤ a(pik)

0 ≤ i < Nr ∧ ∀pik ∈ FOpi0 (13)

where vertex pi0 is the source of Ri in G, vertex pik is kth

sink of Ri in G, Sik is the slack allocated to kth sink in Ri

and d(pi0, pik) is the delay from pi0 to pik in Ri using VddH.
For the edges other than routing in G, the constraints can
be expressed as

a(u)+d(u, v) ≤ a(v) ∀u ∈ V∧u /∈ SRC∧v ∈ FOu (14)

where SRC contains vertices corresponding to routing tree
sources.

The time slack allocation problem is formulated using ob-
jective function (11), additional constraints (12), slack upper
bound constraints (3), and timing constraints (8), (9), (13)
and (14). It is easy to verify that all the constraints are
linear, and the objective function (11) is also linear.

Theorem 1. The time slack allocation problem is a lin-
ear programming (LP) problem.

4. NETWORK FLOW BASED BUDGETING
The runtime of time slack allocation in EdTLC-LP can

be very long for large circuits mainly due to the expensive
computational time of linear programming. In this section,
we formulate the time slack allocation problem as a min-cost
network flow problem and present a new algorithm, EdTLC-
NW , with significantly reduced runtime.Similar network
flow formulation has been used for timing budgeting in high
level synthesis [14].

4.1 Network Flow Formulation
We first deliberately distribute slack sik to the switches

in the path from the source to to kth sink in Ri. As the
min function in (5) cannot be efficiently handled by a net-
work flow formulation, we define the sink with the minimum
slack as the critical sink in the fanout cone of a switch with
multiple sinks. We then use sikcij/Cik of this critical sink
to replace the min operator over all sinks in the fanout cone
of a switch. The dynamic power reduction (6) and leakage
power reduction (7) for Ri can be rewritten as follows,

Pdr(i) = 0.5fclk · ∆V dd2
·

Ns(i)−1
X

j=0

Sik · [fs(i, j) ·
lik · c2

ij

Dik · Cik

]

(15)

Plr(i) =

Ns(i)−1
X

j=0

Sik · [(
lik · cij

Dik · Cik

) · ∆Ps(i, j)] (16)

The objective function can be rewritten as following by
merging the coefficient of the slack Sik of kth sink in Ri as
follows,

Maximize

Nr−1
X

i=0

Nk(i)−1
X

k=0

Wik ·Sik =
X

∀Sink

Wik ·Sik (17)

Wik =
X

∀j∈UBCik

[0.5fclk∆V dd2cijfs(i, j)+∆Ps(i, j)]·
cij · Dik

(Cik · lik)

(18)
where set UBCik include all switches with kth sink as the
critical sink in Ri.

Since Wik > 0 for all sinks, we can restrict timing con-
straint (13) as the following equation to maximize the ob-
jective function,

Sik = a(pik)−a(pi0)−d(pi0, pik), 0 ≤ i < Nr∧∀pik ∈ FOpi0

(19)
After substituting Sik using (19) and rearrangement, objec-
tive function (17) can be expressed as,

Maximize

Nr−1
X

i=0

Nk(i)−1
X

k=0

Wik·[a(pik)−a(pi0)−d(pi0, pik)]

(20)
Similarly, slack bound constraint (3) can be rewritten as

a(pi0) − a(pik) ≤ −d(pi0, pik) (21)

a(pik) − a(pi0) ≤ d(pi0, pik) + Dik (22)

We then merge the timing constraint (21) and (14) into the
general expression (10).

Similar to [14], a virtual input node (SI) and a virtual
output node (SO) are added into G to connect all nodes in
PI and PO, respectively. All edges connected to SI and
SO have zero delay. We add a backward edge e(pik, pi0)
for each source sink pair in Ri. A delay of −(d(pi0, pik) +
Dik) is associated to e(pik, pi0) to represent the slack upper
bound. A virtual edge e(SO, SI) with delay −Tspec is then
added. All constraints can now be represented by edges in
G. For example, edge e(u, v) with delay d(u, v) represents
constraint a(u) − a(v) < −d(u, v).

To represent the objective function (20) in G, we asso-
ciate a weight wuv in each edge e(u, v). For those edges
e(pi0, pik) corresponding to routing, let wpi0pik

= Wik. For
other edges, let wuv = 0. The objective function (20) can
then be rewritten as,

Maximize
P

v∈V
a(v)(

P

u∈FIv
wuv −

P

u∈FOv
wvu)

−
PNr−1

i=0

PNk(i)−1
k=0 d(pi0, pik) (23)

where
PNr−1

i=0

PNk(i)−1
k=0 d(pi0, pik) is a constant and can be

removed from the objective function (23), and FIv/FOv is
fanin/fanout set of vertex v.

For the optimization problem with constraints (10) and
(22) and objective function (23), its dual problem is

min
P

e(i,j)∈E
(d(i, j) + Dij) · zij − d(i, j) · yij (24)

s.t.
P

e(k,i)∈E
(yki − zki) −

P

e(i,j)∈E
(yij − zij) = ρi (25)

ρi =
P

j∈FIi
wji −

P

k∈FOk
wik (26)

yij , zij ∈ R+ (27)



To verify that the above dual problem is a min-cost net-
work flow problem on G, yij is the flow along e(i, j) with cost
−d(i, j), zij is the flow along e(j, i), which corresponds to
routing and is associated with cost d(i, j) + Dij . Obviously,
no negative cycle is introduced by the backward edges. ρi

is the demand in each vertex. Note that
P

i∈V
ρi = 0 is

satisfied as required in the min-cost network flow problem.
Hence, we have the following theorem.

Theorem 2. The dual problem of the time slack alloca-
tion problem is a min-cost network flow problem.

After solving the min-cost network flow problem, we can get
the solutions for variables yij and zij . Similar to [14], we
can calculate the solution of the primal problem. We first
construct the residual graph G′(V, E ′) from the original G.
For any edge e(i, j) in G′ with non-zero flow, there are two
edges e(j, i) and e(i, j) in G′. The cost of each backward
edge e(j, i) is d(i, j), and is equal to the complement of the
forward edge cost. Let δi be the shortest distance from SI
to vertex i in G′. It has been proved in [14] that a(i) = −δi

is an optimal solution to the primal problem. We use the
push-relabel algorithm [15] for min-cost flow problem and
Bellman-Ford algorithm [16] for shortest path problem.

4.2 Comparison Between EdTLC-LP and
EdTLC-NW

The basic difference between EdTLC-LP and EdTLC-NW
is the way to calculate the slack for each switch. EdTLC-
LP chooses the minimum sikcij/Cik among all sinks while
EdTLC-NW chooses the sikcij/Cik of the critical sink. Let
kth sink be the critical sink in the fanout cone of jth switch
in Ri. EdTLC-NW estimates number of VddL switches in
Ri as

Fn(i) =

Ns(i)−1
X

j=0

sik

Cik

· cij (28)

It has been proved in [10] that (5) can always give a lower
bound of the number of VddL switches that can be achieved
in Ri for uniform wire length. However, (5) cannot always
give an infimum (the greatest lower bound) for the VddL
switch number. Figure 1 (a) shows a simple example (uni-
form length of wire segments is assumed for simplicity).

b1

3/6    b2 b3   3/3

s0, slack = 3

3/6    b4

b0

s1, slack = 3

3/6    b5

3/6    b6

b1

2/4    b2 b3   2/3

s0, slack = 2

2/4    b4

b0

s1, slack = 2

(a) (b)

Figure 1: An example of estimated VddL switch #

Suppose S1 is the critical sink based on the current tim-
ing graph, and a slack of 2 is allocated to both S0 and
S1. (5) estimates VddL switch number as (2/4 + 2/4 +

2/3 + 2 min(2/4 + 2/3)) = 8/3 while (28) gives an estima-
tion as (2/4 + 2/4 + 2/3 + 2 · 2/3) = 3. Obviously, we CAN
achieve three VddL switches while satisfying the allocated
slack S0 = S1 = 2. This indicates that EdTLC-LP cannot
always give the infimum of VddL switch number.

On the other hand, EdTLC-NW always gives a greater
estimation than EdTLC-LP while it might give an over-
estimated result. As shown in Figure 1 (b), suppose S1
is still the critical sink. The slacks allocated to S0 and
S1 are both 3. (5) gives an estimation as (3/6 + 3/6 +
3/6 + 3/6 + 3/3 + 2 min(3/6 + 3/3)) = 4 while (28) gives
(3/6 + 3/6 + 3/6 + 3/6 + 3/3 + 2 · 3/3) = 5. However, we
cannot achieve five VddL switches while satisfying the allo-
cated slacks S0 = S1 = 3. This indicates that EdTLC-NW
may overestimate the VddL switch number in some cases.

In summary, EdTLC-LP may give a conservative estima-
tion of power savings while EdTLC-NW may give an over-
optimistic estimation. In the experiments to be presented
in Section 5, the two formulations give a similar estimation
for most cases due to the fact that the most critical sink
is usually the one with the minimum sikcij/Cik. In addi-
tion, EdTLC-NW can achieve results close to EdTLC-LP
in terms of power reduction but with significantly shorter
runtime.

5. EXPERIMENTAL RESULTS
5.1 Experimental Settings

We conduct the experiments on the largest MCNC bench-
marks [17] including ten combinational circuits (group I in
Table 2) and ten sequential circuits (group II in Table 2).
We map them into FPGA with LUT size of 4 and cluster size
of 10. We use the same Vdd-programmable logic blocks and
interconnects in [10], but with a mix of different interconnect
wire lengths. We use 60% length 4 wire and 40% length 8
wire for better performance and area tradeoff, as suggested
in [18]. The unused interconnect switches are power-gated
in all cases. Similar to [8], we customize the FPGA chip size
for each benchmark circuit and use the smallest chip that
fits each benchmark. We use 1.3v for VddH and 0.8v for
VddL same as [10] in our experiments at 100nm technology
node. We perform dual-Vdd assignment without delay in-
crease compared to the circuit using only VddH in the rest
of the paper.

We first use VPR [13] for single-Vdd placement and rout-
ing. Before applying budgeting algorithms to the Vdd pro-
grammable interconnects, a sensitivity based assignment [6]
is first performed to assign Vdd-level for Vdd-programmable
logic blocks without performance loss1. The cycle-accurate
FPGA power simulator fpgaEva-LP2 [11] is then used to
calculate power.

5.2 Comparison of Interconnect Power
We first compare the the number of VddL switches achieved

by EdTLC-LP and EdTLC-NW in Table 2, as it is a good in-
dication of power reduction. The number of VddL switches
is expressed in percent of used switch number. EdTLC-LP
and EdTLC-NW achieve 84.43% and 84.05% VddL switches,
respectively. Both achieve almost the same number of VddL
switches.

1
Both algorithms EdTLC-LP and EdTLC-NW do consider the fact

that VddL logic blocks consume time slack.



We then present the interconnect power reduction achieved
by EdTLC-LP and EdTLC-NW in Table 3. Single-Vdd
FPGA with power-gating is used as the baseline for intercon-
nect power. Columns 2-3 present the interconnect dynamic
and leakage power for the baseline case. Columns 4-5 present
the overall interconnect power reduction for EdTLC-LP and
EdTLC-NW . Compared to the baseline case, EdTLC-LP
and EdTLC-NW reduce total interconnect power by 52.71%
and 52.03%, respectively. We also present the interconnect
dynamic power and leakage power reduction in columns 6-
9. Compared to the baseline, EdTLC-LP and EdTLC-NW
reduce dynamic power by 52.03% and 51.69%, and leakage
power by 62.71% and 62.51%, respectivly. Clearly, EdTLC-
NW achieves as good results as EdTLC-LP .

For both algorithms, we also present the contribution of
refinement step in Table 2 and Table 3. The refinement step
achieves 3.49% and 4.17% VddL switches for EdTLC-LP
and EdTLC-NW , respectively. Compared to baseline, the
refinement step in EdTLC-LP /EdTLC-NW obtains 3.35%/
1.03% more power reduction, 3.45%/0.96% more dynamic
power reduction and 2.23%/2.57% more leakage power re-
duction, respectively. It is clear that the refinement step
is effective to distribute surplus time slack and further re-
duce interconnect power. The first source of the surplus
time slack is the difference between the continuous problem
formulations (i.e., the allocated slack is continuous in bud-
geting) and the fact that Vdd-level assignment is discrete
(i.e., the slack consumed by a VddL switches must be ∆d).
Secondly, the objective of our formulations is to maximize
the estimated power reduction instead of the exact power
reduction. The two may be different due to the fact that
not all allocated slack is useful for power reduction.

Circuit Cluster# EdTLC-LP EdTLC-NW
ex5p 123 68.32% (3.43%) 67.99% (4.87%)
apex4 134 75.38% (6.65%) 73.27% (8.04%)
misex3 153 73.77% (4.12%) 72.41% (9.11%)
alu4 162 78.67% (4.89%) 78.08% (6.54%)

I seq 198 70.49% (4.93%) 69.52% (6.63%)
apex2 213 78.48% (3.98%) 78.09% (4.74%)
des 218 82.13% (1.94%) 82.01% (1.86%)
spla 399 78.46% (4.40%) 78.36% (6.01%)

ex1010 493 78.77% (5.55%) 78.59% (6.84%)
pdc 568 79.76% (4.19%) 79.29% (5.16%)

tseng 131 97.02% (2.58%) 97.07% (0.71%)
dsip 162 91.70% (1.10%) 91.67% (1.67%)
diffeq 195 92.93% (2.58%) 92.90% (1.21%)

II s298 256 89.62% (2.93%) 89.59% (1.41%)
bigkey 294 81.43% (2.18%) 80.88% (7.27%)
elliptic 421 98.72% (1.92%) 98.75% (0.28%)
frisc 595 99.19% (4.74%) 99.19% (2.58%)

s38584.1 704 97.77% (1.86%) 97.75% (0.65%)
s38417 847 90.15% (2.53%) 89.86% (2.93%)
clma 1358 85.93% (3.20%) 85.66% (3.38%)
Ave 266 84.43% (3.49%) 84.05% (4.17%)

Table 2: Percentage of VddL switches achieved by
EdTLC-LP and EdTLC-NW

5.3 Comparison of Runtime
Table 4 compares the runtime of EdTLC-LP and EdTLC-

NW. Column “budget” refers to the runtime for distributing
slack to each tree. The simplex method based LP solver [19]
is used in EdTLC-LP . Column “total” presents the over-
all runtime. Column “speedup” shows the ratio of speedup
achieved by EdTLC-NW compared to EdTLC-LP. EdTLC-
NW achieves as good results as EdTLC-LP but runs 8X
faster on average. It is clear that the speedup of the bud-

geting time increases for the larger circuits. For the largest
circuit clma, which contains over 1k clusters, EdTLC-NW
achieves up to 6000X speedup in time slack allocation and
20X speedup in overall runtime. The current commercial
FPGA designs often contain 10k to 100k clusters [20], which
indicates that the EdTLC-NW may have more speedup than
that reported in this paper in practice. The min-cost net-
work flow based algorithm EdTLC-NW takes negligible run-
time in time slack allocation compared to EdTLC-LP . Clearly,
the efficiency of EdTLC-NW makes our algorithm highly
scalable, especially for the applications that need iterative
budgeting for different time specifications.

EdTLC-NW EdTLC-LP speedup(X)
cir budget total budget total budget total

ex5p 1 33 1187 1254 118x 5x
apex4 1 33 184 228 184x 7x
misex3 1 38 155 227 155x 6x
alu4 1 36 101 131 101x 4x
seq 1 55 179 216 179x 4x

apex2 1 78 413 502 413x 6x
des 1 95 327 444 327x 5x
spla 1 300 837 1181 837x 4x

ex1010 2 346 2391 2804 1196x 8x
pdc 2 803 3633 4496 1817x 6x

tseng 1 32 83 91 83x 3x
dsip 1 44 181 223 181x 5x
diffeq 1 41 252 321 252x 8x
s298 1 96 371 494 371x 5x

bigkey 1 89 478 589 478x 7x
elliptic 1 229 877 1128 877x 5x
frisc 2 479 1823 2364 912x 5x

s38584 3 421 2305 2806 768x 7x
s38417 4 709 3719 4463 930x 6x
clma 9 2735 53712 56726 5968x 21x
Ave 1 335 3660 2775 3607x 8x

Table 4: Runtime (second) comparison between
EdTLC-LP and EdTLC-NW

6. CONCLUSIONS
To reduce power in dual-Vdd FPGA, we have re-formulated

the LP based time slack allocation problem to a min-cost
network flow based problem and presented a new network
flow based algorithm, EdTLC-NW , with significantly shorter
run-time. Using single-Vdd FPGA with power-gating as the
baseline, the linear programming (LP) based time budgeting
algorithm EdTLC-LP [12] and EdTLC-NW reduce intercon-
nect power by 52.71% and 52.52%, respectively. EdTLC-
NW achieves as good results as EdTLC-LP but runs 8X
faster on average. The speedup increases for larger circuits.
For the largest circuit, EdTLC-NW achieves up to 6000X
speedup in time slack allocation and 20X speedup in overall
runtime. Clearly, the efficiency of EdTLC-NW makes our al-
gorithm highly scalable, especially for the applications that
may need iterative budgeting procedures. We expect that
EdTLC-NW has more speedup in real designs than that re-
ported in this paper since real designs are often bigger than
the examples in this paper.
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