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ABSTRACT
Process variation and pre-routing interconnect delay uncer-
tainty affect timing and power for modern VLSI designs
in nanometer technologies. This paper presents the first
in-depth study on stochastic physical synthesis algorithms
leveraging statistical static timing analysis (SSTA) with pro-
cess variation and pre-routing interconnect delay uncertainty
for FPGAs. Evaluated by SSTA with the placed and routed
layout and measured at the same clock frequency, the stochas-
tic clustering, placement and routing reduce the yield loss
from 50 failed parts per 10 thousand parts (pp10K) for the
deterministic flow to 9, 12 and 35pp10K respectively for
MCNC designs. The majority of improvements are achieved
during clustering and placement while routing stage has
much less gain. The gain mainly comes from modeling in-
terconnect delay uncertainty for clustering and from con-
sidering process variation for placement. When applying
all stochastic algorithms concurrently, the yield loss is re-
duced to 5pp10K (a 10X reduction) with the mean delay re-
duced by 6.2% and the standard deviation reduced by 7.5%.
On the other hand, stochastic clustering with deterministic
placement and routing is a good flow with little change to
the entire flow, but the yield loss is reduced from 50pp10K
to 9pp10K, the mean delay is reduced by 5.0%, the standard
deviation is reduced by 6.4%, and the runtime is slightly re-
duced compared to the deterministic flow. Finally, while its
improvement over timing is small, stochastic routing is able
to reduce the total wire length for the same routing channel
width by 4.5% and to reduce runtime by 4.2% compared to
deterministic routing.
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1. INTRODUCTION
Because interconnect delay is dominant in modern VLSI designs

[1], pre-routing interconnect delay estimation is needed for early
stages of design automation. For FPGAs, the existing timing-driven
physical synthesis algorithms are all deterministic and leverage tim-
ing slack analyzed by static timing analysis (STA) as a guidance.
The interconnect delay is estimated by various methods in different
design stages for STA. The actual post-routing interconnect delay
may differ from the estimated delay, which introduces pre-routing
interconnect delay uncertainty. Recently, a probabilistic approach
by modeling interconnect delay as a random variable has been pre-
sented for buffer insertion in ASICs [2]. Similar approach consider-
ing high-level power and delay estimation inaccuracy by modeling
the supply voltage as a random variable has been presented for volt-
age scheduling to minimize risk [3]. However, no existing work
in the literature has considered pre-routing interconnect uncertainty
during physical synthesis for FPGAs.

Process variation has gained a growing impact on modern VLSI
designs as devices scale down to nanometer technologies. FPGAs
are subject to variations in the operation of transistors comprising
logic functionalities and switching muxes. With process variation,
any near-critical paths may actually be statistically critical. Statis-
tical criticality of a timing edge/node is defined as the probability
that this edge/node is statistically timing critical considering pro-
cess variation [4]. It depends on not only slack magnitude, but
also circuit topology and correlation between edges. Slack itself
analyzed by STA is based on the single critical path and ignores
near-criticality. Statistical criticality has recently been studied in
[4, 5, 6, 7], and applied to gate sizing in [8, 9] for ASICs and
placement in [10] for FPGAs. However, only placement stage but
not the entire physical synthesis flow has been investigated in [10].
In addition, the interconnect uncertainty and spatially correlated
process variation are not considered in [10].

Considering both pre-routing interconnect uncertainty and pro-
cess variation, the traditional timing-driven physical synthesis al-
gorithms based on STA may not optimize for near-critical paths and
may not optimize timing statistically. In this paper, we study the
stochastic physical synthesis algorithms leveraging statistical static
timing analysis (SSTA) with statistical criticality calculation for FP-
GAs. The baseline FPGA synthesis flow (see Figure 1) consists of
CutMap [11], T-VPack [12] and VPR [12], which are the commonly
used algorithms. The same synthesis result is applied to all chips
for the same application. The delay distribution is evaluated by
SSTA after detailed placement and routing. Stochastic clustering,
placement and routing are studied considering interconnect delay



uncertainty and process variation. We first replace each individual
synthesis stage with the stochastic algorithm and study its impact
on timing. We then replace multiple stages concurrently and study
the interaction between these stochastic algorithms in a style simi-
lar to the study for power-aware algorithms in [13]. Although not
done here, our methods can be extended to high-level synthesis and
technology mapping algorithms for statistical timing optimization1.
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Figure 1: FPGA synthesis flow.

In order to quantify the benefit of stochastic algorithms, we use
MCNC designs [15] in evaluation. When measured at the same
clock frequency, the stochastic clustering, placement and routing
reduce the yield loss from 50 failed parts per 10 thousand parts
(pp10K) for the deterministic flow to 9, 12 and 35pp10K, respec-
tively. Note that we use a heavily guard-banded delay as the cut-off
delay such that the yield loss is very small (e.g. a few pp10K even
for the baseline case) according to the usual practice in reality. The
majority of improvements are achieved during clustering and place-
ment. The gain mainly comes from modeling interconnect delay
uncertainty for clustering and from considering process variation
for placement. On the other hand, routing stage has much less gain.
When applying all stochastic algorithms concurrently, the yield loss
is reduced to 5pp10K with the mean delay reduced by 6.2% and
the standard deviation reduced by 7.5%. Meanwhile, stochastic
clustering with deterministic placement and routing is a good flow
with little change to the entire flow, but the yield loss is reduced
from 50pp10K to 9pp10K, the mean delay is reduced by 5.0%, the
standard deviation is reduced by 6.4%, and the runtime is slightly
reduced compared to the deterministic flow. While it improvement
over timing is small, stochastic routing is able to reduce the total
wire length for the same routing channel width by 4.5% and to
reduce runtime by 4.2% compared to deterministic routing.

Note that the yield for FPGA devices is controlled by the man-
ufacturer. Timing models for individual delay element must be
guard-banded to consider process variation and environmental con-
ditions. However, this guard-band can be either overly pessimistic
(e.g. on long paths) or overly optimistic (e.g. on very short paths)
for an unknown design, meaning that even some designs might ac-
tually run much faster than timing analysis says and others might
1
Leveraging the programmability of FPGA, FPGA chips for a same

application can be programmed differently with respect to the indi-
vidual variation maps (i.e., one customized configuration for a chip
or a group of chips with a similar behavior). The so-called chip-wise
FPGA design as first studied in [14] has a higher design cost but
better design quality compared to stochastic design studied in this
paper. Both are important as they offer different tradeoffs between
cost and quality.

fail to operate due to process variation outside the guard-banded
value. The degree to which either occurs is based on the amount of
guard-banding used in the timing model. Our study shows that by
introducing statistical variation into the timing model and synthesis
flow, we can improve timing and reduce yield loss for target designs
implemented on the same FPGA fabric. Such improvement war-
rants more investigation of stochastic physical synthesis algorithms
for FPGAs in the future.

The rest of the paper is organized as follows. Section 2 presents
the background on the models of interconnect uncertainty and pro-
cess variation, SSTA and the general experimental setting. Sec-
tions 3 to 5 present the stochastic clustering, placement and routing
algorithms, and their results. Section 6 then combines the results
from each individual stage and studies the interaction between them.
Section 7 concludes the paper.

2. PRELIMINARIES

2.1 Interconnect Uncertainty Model
Similar to [2], we model the pre-routing interconnect delay as

an independent Gaussian to consider interconnect uncertainty. The
distribution of the Gaussian (i.e. the mean and the standard devia-
tion) is approximated based on various methods in different design
stages for the mean value and the statistics on post-routing inter-
connect delay for the standard deviation. To verify our modeling
and algorithms, we evaluate our stochastic algorithms with the fully
placed and routed layout.

2.2 Process Variation Model
Modern VLSI designs see a large impact from process variation

as devices scale down to nanometer technologies. This variation
can be classified as global, affecting all aspects of a given chip,
spatial/regional, affecting geographic areas of the chip, or local,
randomly affecting each individual transistor. Delay of a circuit
element (e.g., an LUT or a routing switch) is a random variable
under presence of process variation.

To model spatially correlated variation, we partition an FPGA
chip into m grids and assume perfect correlation among the devices
in the same grid. A standard Gaussian variable ∆Sk is associated
with grid k. Given a set of correlated variables ∆Sk with the
covariance matrix Q, principle component analysis (PCA) [16] can
be used to transform ∆Sk into an uncorrelated set ∆S′

k (principle
components) as

∆Sk =

m
X

l=1

p

λkvkl∆S′

l (1)

where λk is the kth eigenvalue of the covariance matrix Q, vkl is
the kth element of the lth eigenvector of Q. In our study, we use
the method from [17] to generate the covariance matrix. Global and
local variations are also assumed as a set of independent random
variables with PCA. Similar to [4], delay is then modeled in a
first-order canonical form as

a0 +
n

X

i=1

ai∆Xi + an+1∆Sk + an+2∆Ra (2)

where a0 is the nominal value, ∆Xi represents the variation for
each global source of variation Xi (up to n sources), ai represents
the sensitivity to each global variation, ∆Sk represents the spatially
correlated variation for grid k and can be represented by principle
components using (1), an+1 is the sensitivity to ∆Sk, ∆Ra is
the variation of an independent random variable Ra from its mean
value, and an+2 is the sensitivity of Ra. Sensitivities are measured



assuming that∆Xi , ∆Sk and∆Ra are standard Gaussians N(0, 1).
Although there are numerous sources of variation, only variations
in lithographic effects affecting Leff and dopant atoms in oxide
layers affecting Vth are considered in this paper. SPICE simulation
is performed to obtain sensitivities for each type of circuit element.

2.3 Statistical Static Timing Analysis
Statistical static timing analysis (SSTA) has recently been pro-

posed to analyze timing with process variation [4, 16]. SSTA can
however serve as a unified framework to handle both pre-routing
interconnect uncertainty and process variation. The probabilistic
equivalents of the “max”, “min”, “add” and “subtract” operations
are involved in SSTA. With the delay in the canonical form, addition
and subtraction are performed easily [4]. The max or min of two
Gaussians is not a Gaussian, but is modeled as a Gaussian [18] and
then expressed in the canonical form, which allows us to propagate
the correlations due to global and spatial variations. With forward
and backward traversals of the timing graph, the distribution of the
arrival and requested arrival time for each node, and the statistical
criticality for each node and edge can be calculated. The statistical
criticality of an edge or node is defined as the probability that this
edge or node is timing critical [4].

Given a cut-off delay Tcut, the timing yield is defined as the
probability that the critical path delay is no longer than Tcut con-
sidering variation. Given the canonical form of the arrival time
at the virtual sink in the timing graph, the mean Tµ and stan-
dard deviation Tσ of circuit delay can be calculated.2 With a
cut-off delay Tcut, the timing yield can then be computed using
cumulative density function (CDF) of the standard Gaussian as
CDF ((Tcut − Tµ)/Tσ). The yield loss is defined as the num-
ber of parts that fail to meet the timing requirement out of 10,000
parts, in short, parts per 10K (pp10K). The yield loss can be easily
calculated as (1 − timing yield) · 10K.

2.4 General Experimental Setting
To quantify the benefit of our stochastic algorithms, we conduct

the experiments on the largest MCNC designs [15]. We use the
Berkeley predictive device model [19] at ITRS [20] 65nm technol-
ogy node. Suggested in [21] for higher yield, we use the min-ED
(energy-delay product) device setting (Vdd = 0.9v and Vth = 0.3v).
The VPR FPGA toolset [12] implements an island style FPGA ar-
chitecture resembling Altera’s Stratix device [22] with 10 4-LUT
clusters, and 60% length-4 and 40% length-8 wires. 1.2X of mini-
mum routing channel width obtained by the deterministic synthesis
flow is used for each design. The same routing channel width
is used for stochastic algorithms. We implement a block-based
SSTA from [4] with statistical criticality calculation for each tim-
ing edge/node. To model spatial correlation, each FPGA chip is
partitioned into grids such that each grid contains five tiles in one
dimension (around 0.5mm in 65nm technology). The correlation
covariance coefficient decreases to 0.1 at 2mm distance. We as-
sume a variation in each of Leff and Vth of 10%, 10% and 6%
at 3σ (i.e. a 99.73% chance that variation is within +/- 10% or
6% deviated from the nominal value) for global, spatial and local
variations respectively unless specified otherwise. To evaluate the
yield loss, we also assume a 2.5σ guard-banded delay [10] (i.e. the
delay of each individual circuit element is modeled as µ+2.5σ3) in
the deterministic flow evaluated by STA as the cut-off delay Tcut.
Note that we use a heavily guard-banded delay as the cut-off delay
2
Note that the mean delay Tµ may be larger than the nominal delay

analyzed by STA due to the “max” operation with process variation.
3
µ and σ are the nominal delay and standard deviation of delay for

each circuit element with variation, respectively.

Tcut such that the yield loss is very small (e.g. a few pp10K even
for the baseline case) according to the usual practice in reality.

3. CLUSTERING
Modern island-style FPGAs have clustered logic blocks that con-

tain multiple basic logic elements (BLEs). Each BLE consists of
a pair of LUT and register. Clustering algorithm packs LUTs and
registers into clusters under certain constraints, i.e. the number of
BLEs, in/out pins and clocks of one cluster. The optimization goals
of clustering including area, timing and routability have been stud-
ied in one of the representative timing-driven algorithms, T-VPack
[12], and have further been extended to reduce power in [13]. Be-
low we first review the deterministic clustering algorithm T-VPack
and then present our new stochastic algorithm, ST-VPack.

3.1 Timing-Driven Clustering T-VPack
During clustering, T-VPack first selects an unclustered BLE as

the seed of a new cluster. An attraction function is calculated for all
BLEs with respect to the current cluster. The BLE with the highest
attraction value is then packed into the cluster until this cluster is
fully utilized. If the cluster still has empty slots for BLE but lacks
of cluster inputs, a hill-climbing technique is applied to look for
BLEs that do not increase the number of inputs used by the cluster.

In order to optimize timing, BLEs on the critical path are packed
into clusters since local connection delay within a cluster is much
smaller than global interconnect delay. STA is performed using a
constant delay model, i.e. 0.1 for logic and local connection delay
and 1.0 for global interconnect delay. Given the slack analyzed by
STA, the static criticality of edge i is defined as

ConnectionCriticality(i) = 1 −
slack(i)

MaxSlack
(3)

where MaxSlack is the largest slack among all connections in the
circuit. The static criticality of a BLE B is then defined as

Criticality(B) = BaseBLECrit(B) +

ε · TotalPathsAffected(B) +

ε2 · Dsource(B) (4)

where BaseBLECrit(B) of BLE B is defined as the maximum
criticality of edges connected to B if B is a seed BLE, or the
maximum criticality of edges that are connected to both B and
cluster C if B is not a seed BLE. The second and the third terms
are the number of critical paths affected if B is packed into C, and
the distance (the number of levels) from the timing graph source to
B, respectively. These two terms only serve as tie-breakers with a
small ε when two BLEs have the same BaseBLECrit(B).

Based on (4), the attraction function between BLE B and cluster
C is defined as

Attraction(B) = λ · Criticality(B) + (1 − λ) ·

Nets(B)
T

Nets(C)

MaxNets
(5)

where the first term is for timing cost and the second term is for
connection cost. Net(B) and Net(C) are sets of nets connected to
B and C, respectively. λ is the tradeoff parameter between timing
and connection, with a value of 0.75 adopted in T-VPack.

3.2 Stochastic Clustering ST-VPack
The deterministic timing model with constant interconnect delay

used in T-VPack leads to some inaccuracy in estimation of where
the critical path lies. T-VPack may try to shorten a path which is
not part of the post-routing critical path due to this inaccurate esti-
mation. Furthermore, any near-critical paths may become critical



considering process variation. Our new stochastic clustering algo-
rithm, ST-VPack, leverages a statistical timing model and optimizes
timing statistically.

To consider both interconnect uncertainty and process variation,
we model interconnect delay for connection j as

dj = d0 + σp∆Rp + σi∆Ri (6)

where ∆Ri models interconnect uncertainty4 and is independent
from each other for all interconnects, ∆Rp models the correlation
between interconnects due to global and spatial process variations
and is shared by all interconnects, and σi and σp are 0.2 and 0.1
(relative standard deviation of 20% or 10%) respectively. Any
values of σp between 0.0 to 0.1 and σi between 0.1 and 0.3 work
fairly well, however (to be presented in Table 1). d0 is set to 1.0 for
all global interconnects same as that in T-VPack. Both ∆Rp and
∆Ri are standard Gaussians N(0, 1), and are independent from
each other. (6) is in the first-order canonical form similar to (2).
Note that the interconnect uncertainty may not be a Gaussian but is
approximated as a Gaussian, ∆Ri.

With the delay model (6), SSTA can be performed with statistical
criticality calculated for each timing edge/node. Similar to STA in
T-VPack, SSTA is only performed once before clustering in ST-
VPack. We then modify (4) for ST-VPack as

SCriticality(B) = SBaseBLECrit(B)η + ε2 · Dsource(B)

(7)
where SBaseBLECrit(B) of BLE B is calculated as the max-
imum statistical criticality of edges that are connected to both B and
cluster C if B is not a seed BLE. For a seed BLE, SBaseBLECrit(B)
is defined as the statistical criticality of B, which is different from
the scenario in T-VPack. TotalPathsAffected(B) in (4) de-
pends on circuit topology and is removed from (7) since it has
already been considered in statistical criticality. Dsource(B) is
still kept in (7) as a tie-breaker such that BLEs with the same
SBaseBLECrit(B) are packed from one end of a chain of BLEs
rather than from the middle. Similar to the cost functions in place-
ment and routing (to be discussed), a new exponent parameter η is
introduced to control the relative importance of connections with
different criticalities. We experimentally select an η of 0.1 for the
best timing yield. The new attraction function is then expressed as,

Attraction(B) = λ ·SCriticality(B) + (1− λ) ·
Nets(B)

T

Nets(C)

MaxNets
(8)

with λ of 0.75 for the same tradeoff between timing and connection
as that in T-VPack.

3.3 Experimental Results
We first study the impact of the combination of two uncertainty

sources, interconnect uncertainty σi and process variation σp, in de-
lay model (6) on ST-VPack. Table 1 presents a few combinations5
of different σi and σp and the corresponding post-routing mean
(Tmean) and standard deviation (Tsigma) of circuit delay. In this
table, group I does not consider interconnect uncertainty (σi = 0)
while group II does not consider process variation (σp = 0). It
is clear that group II leads to a smaller mean delay by modeling
interconnect uncertainty while all combinations in both groups lead
to a similar standard deviation. On the other hand, group III con-
siders both interconnect uncertainty and process variation. Further
4
∆Ri can be used to considered both interconnect uncertainty and

local process variation, but interconnect uncertainty is the dominant
component between the two.
5
Although only a few combinations are presented in Table 1, our

experimental results show a similar trend for all combinations for σp

between 0.0 and 0.1, and σi between 0.0 and 0.3.

considering process variation does not have a significant impact
on the mean delay. Based on Table 1, the gain of ST-VPack is
mainly due to modeling interconnect uncertainty. This is further
explained in Figure 2, which compares the probability density func-
tions (PDF) for post-routing delay normalized with respect to the
estimated one during clustering (i.e. the delay variance introduced
by interconnect uncertainty) and post-routing delay with process
variation normalized with respect to the nominal one (i.e. the delay
variance introduced by process variation). The statistics is based on
all global interconnects of all designs. Clearly, interconnect uncer-
tainty leads to a more significant delay variance (i.e. a much wider
delay spread) in clustering stage. In the rest of the paper, σi and σp

are set to 0.2 and 0.1, respectively.

I II III

σi 0.0 0.0 0.1 0.2 0.1 0.2
σp 0.0 0.1 0.0 0.0 0.1 0.1

Tmean (ns) 22.5 22.6 21.6 21.5 21.8 21.7
Tsigma (ns) 3.35 3.36 3.26 3.24 3.20 3.19

Table 1: The effect of standard deviation due to
interconnect uncertainty σi and process variation σp

(based on the geometric mean of 20 MCNC designs).
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Figure 3 shows the normalized nominal (Tnorm), mean (Tmean)
and standard deviation (Tsigma) of post-routing circuit delay ob-
tained by ST-VPack for each benchmark. Each is normalized to
its counterpart in T-VPack. The same deterministic placement and
routing algorithms are used to generate detailed layouts. The nomi-
nal delay is evaluated by STA without considering process variation.
The mean and standard deviation of delay are evaluated by SSTA
with variation. Compared to T-VPack, ST-VPack reduces the nom-
inal, mean and standard deviation of delay for most of benchmarks
with few exceptions, which are due to the heuristic statistical cost
function in ST-VPack. For example, ST-VPack increases the mean
delay by 2% but reduces the standard deviation by 32% for dsip,
which results in a much smaller yield loss compared to T-VPack.
On average, ST-VPack reduces the nominal, mean and standard
deviation of delay by 3.7% (up to 12.5%), 5.0% (up to 13.0%)
and 6.4% (up to 31.8%), respectively. The impact of ST-VPack on
timing distribution (Tmean and Tsigma) is larger than that on the
nominal delay due to the fact that we are aiming to optimize timing
statistically for ST-VPack.
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Table 2 compares T-VPack and ST-VPack in more details. On
average, ST-VPack reduces the number of interconnect connections
by 4.2%, delay (or timing graph depth) after packing in constant
delay model (i.e. 1.0 for global interconnect and 0.1 for logic and lo-
cal connection) by 4.0% compared to T-VPack. ST-VPack achieves
almost the same number of clusters after packing. T-VPack and ST-
VPack take 6 and 8 seconds to pack all 20 benchmarks, respectively.
In the rest part of the paper, we only present the overall runtime
(clustering, placement and routing), which is more meaningful. ST-
VPack does not have significant impact on overall runtime. When
evaluated with 2.5σ guard-banded delay, ST-VPack reduces the
yield loss from 50pp10K for the deterministic flow to 9pp10K.
Clearly, ST-VPack is able to effectively improve timing statistically
and reduce yield loss without routability, area and runtime overhead
compared to T-VPack.

T-VPack ST-VPack (% Diff.)
# of connections 5787 5545 (-4.2%)

# of clusters 381.3 381.8 (0.1%)
# of levels 9.3 8.9 (-4.0%)

nominal delay (ns) 21.2 20.4 (-3.7%)
mean delay (ns) 22.9 21.7 (-5.0%)

standard deviation (ns) 3.41 3.19 (-6.4%)
yield loss (pp10K) 50 9

runtime (s) 70.7 70.3 (-0.6%)

Table 2: Clustering results (based on the geometric
mean of 20 MCNC designs).

4. PLACEMENT
After packing, clusters are placed to physical locations on the

FPGA chip. For FPGAs, the typical placement algorithm is simu-
lated annealing as in the timing-driven algorithm, T-VPlace [23],
in VPR [12]. Below we first review T-VPlace and then present our
new stochastic algorithm, ST-VPlace.

4.1 Timing-Driven Placement T-VPlace
Simulated annealing is a heuristic and iterative algorithm in which

moves (swaps of logic cells) are accepted or rejected based on a cost
function and an annealing temperature. T-VPlace considers both
wiring and timing costs. Wiring cost is expressed as

Wiring Cost =

Nnets
X

i=1

q(i)[bbx(i) + bby(i)] (9)

where Nnets is the number of nets in the circuit. The cost of net i is
determined by its horizontal and vertical spans, bbx(i) and bby(i).
Scaling factor q(i) compensates for multi-terminal nets.

Timing cannot be optimized explicitly since it is too expensive to
perform a timing analysis after each move. A heuristic timing cost
is calculated based on the static criticality of each edge defined in
(11), the delay of each edge d(i, j) and the criticality exponent β.
The timing costs of edge (i, j) and for a placement solution are

T iming Cost(i, j) = d(i, j) · criticality(i, j)β (10)

criticality(i, j) = 1 − slack(i, j)/Dmax (11)

T iming Cost =
X

i,j

T iming Cost(i, j) (12)

respectively, where d(i, j) is obtained from the delay lookup matrix
and the current placement, Dmax is the critical path delay, and
slack(i, j) is the timing slack of each edge. Both Dmax and slack
are calculated by STA, which is performed once at every annealing
temperature. The criticality exponent β is used to control the relative
importance of connections with different criticalities.

The overall cost function is then shown in (13), where λ is the
trade-off parameter between the timing and wiring costs. The pre-
vious timing and previous wiring costs are updated once every
temperature. The temperature and ∆C are used to decide whether
a move is to be accepted or rejected. It was shown in [23] that
β = 8 and λ = 0.5 give the best timing and wiring trade-off.

∆C = λ
∆Timing Cost

Previous T iming Cost
+ (1 − λ)

∆Wiring Cost

Previous Wiring Cost
(13)

4.2 Stochastic Placement ST-VPlace
The interconnect delay estimated in T-VPlace is based on 2-pin

net routing for each pair of locations without considering conges-
tion. The actual delay after routing may differ from the estimated
delay in placement, mainly due to the impact of congestion and
multi-terminal nets. This introduces interconnect delay uncertainty
in placement. In addition, any near-critical paths may become crit-
ical with process variation. Figure 4 compares the PDFs for post-
routing delay normalized with respect to the estimated one during
placement (i.e. the delay variance introduced by interconnect un-
certainty) and post-routing delay with process variation normalized
with respect to the nominal one (i.e. the delay variance introduced
by process variation). The statistics is based on near-critical in-
terconnects (static criticality greater than 0.9 after routing) of all
designs. As shown in this figure, more than 70% of interconnects
have an estimation error within 1% while the relative standard devi-
ation is 6% due to process variation. It is clear that process variation
leads to a more significant delay variance (i.e. a much wider de-
lay spread) and needs to be considered in placement. Because the
study in Figure 2 of Section 3.3 has shown that only the dominant
uncertainty source impacts the clustering results, in this section
we assume that only the dominant uncertainty source, i.e. process
variation, should be considered for placement.6

In order to consider process variation during placement, we cal-
culate a delay matrix in the canonical form instead of the nominal
delay matrix for each pair of locations. The delay in the canonical
form for a routing path is calculated by performing statistical addi-
tion for the interconnect switches in that path. Given the delay in the
canonical form for each edge, SSTA instead of STA is performed at
6
Interconnect uncertainty can be modeled as an independent Gaus-

sian with a small relative standard deviation with respect to the es-
timated delay. Our experimental results however show that such a
small relative standard deviation, e.g. 0.5%, has little impact on the
timing.
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Figure 4: Comparison between PDFs for (i) post-
routing delay normalized w.r.t. the estimated delay
in placement, and (ii) post-routing delay with pro-
cess variation normalized w.r.t. the nominal one.

each temperature to obtain the statistical criticality. Instead of using
the static timing cost function (10), we define statistical timing cost
functions for each edge (i, j) and a placement solution as

ST iming Cost(i, j) = dµ(i, j) · SCriticality(i, j)β′

(14)

ST iming Cost =
X

i,j

ST iming Cost(i, j) (15)

where dµ(i, j) is the mean delay for each edge and SCriticality(i, j)
is the statistical criticality. dµ(i, j) is the same as d(i, j) in (10)
as statistical "max" operation is not involved in a routing tree. Sta-
tistical criticality exponent, β′, is a constant parameter. We exper-
imentally tune β′ to be 0.5 for the best timing yield. The overall
cost function in ST-VPlace is as,

∆C = λ
∆STiming Cost

Previous STiming Cost
+ (1 − λ)

∆Wiring Cost

Previous Wiring Cost
(16)

We use the same λ of 0.5 for the same timing and wiring trade-
off in ST-VPlace. The same annealing scheme in T-VPlace is
also adopted in ST-VPlace. The goal of ST-VPlace is to perform
placement considering process variation, and to optimize for the
statistical timing leveraging the back-end SSTA.

4.3 Experimental Results
Figure 5 shows the normalized nominal, mean and standard devi-

ation of post-routing circuit delay obtained by ST-VPlace for each
benchmark. Each is normalized to its counterpart in T-VPlace. The
same deterministic clustering and routing algorithms are used in
both flows. Compared to T-VPlace, ST-VPlace reduces the mean
and standard deviation of delay for most of benchmarks except for
dsip. ST-VPlace increases the mean delay by 2% but reduces the
standard deviation of delay by 23% for dsip, which results in a
smaller yield loss. ST-VPlace reduces the nominal delay for most
benchmarks except for des, frisc, misex3 and s38417. However,
a smaller mean and standard deviation of delay is achieved for each
of these benchmarks due to the heuristic statistical cost function
in ST-VPlace. On average, ST-VPlace reduces the nominal, mean
and standard deviation of delay by 3.3% (up to 12.3%), 4.0% (up
to 14.2%) and 6.1% (up to 22.7%), respectively. Similar to the
stochastic clustering ST-VPack, ST-VPlace has larger impact on
timing distribution than that on the nominal delay due to its statis-
tical fashion. The impact of ST-VPlace on timing is similar to that
of ST-VPack. Nevertheless, the gain of ST-VPlace mainly comes

from considering process variation, different from ST-VPack where
the gain is mainly due to modeling interconnect uncertainty.
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Figure 5: Normalized nominal, mean and standard
deviation of circuit delay obtained by ST-VPlace.

T-VPlace ST-VPlace (% Diff.)
total wire length 27610 27983 (1.3%)

nominal delay (ns) 21.2 20.5 (-3.3%)
mean delay (ns) 22.9 22.0 (-4.0%)

standard deviation (ns) 3.41 3.20 (-6.1%)
yield loss (pp10K) 50 12

runtime (s) 70.7 219.8 (210.7%)

Table 3: Placement results (based on the geometric
mean of 20 MCNC designs).

Table 3 compares T-VPlace and ST-VPlace in more details. When
evaluated with 2.5σ guard-banded delay, ST-VPlace reduces the
yield loss from 50pp10K for the deterministic flow to 12pp10K.
On the other hand, ST-VPlace increases the total wire length after
routing by 1.3% and takes 3.1X runtime compared to T-VPlace.
Nevertheless, the block-based SSTA has linear time complexity of
O((n + m) · (|V | + |E|)) where n and m are number of global
variation sources and number of grids, respectively. In addition,
SSTA is only performed once at every annealing temperature. The
average complexity of SSTA is still O(1) same as STA in placement.
ST-VPlace therefore has the same average complexity of O(|C|4/3)
as T-VPlace, where |C| is the number of clusters.

5. ROUTING
After clusters are placed to physical locations on the FPGA,

routing is performed to determine which programmable intercon-
nect switches should be turned on to connect required intercon-
nects. Below, we first review the deterministic routing algorithm,
PathFinder [24, 12], in VPR and then present our stochastic rout-
ing algorithm, ST-PathFinder.

5.1 Timing-Driven Routing PathFinder
The routing algorithm in VPR is developed based on an iterative

algorithm PathFinder. During each iteration, routing is performed
for one net at a time with congestion allowed. A wave expansion
algorithm is invoked k times for a k-sink net, with the more critical
sink being routed first. After one entire routing iteration, historical
congestion costs are updated for routing resources and STA is per-
formed to update the slack for each net. Considering the connection



to sink j of net i, the cost to include a routing resource node n is
expressed as,

Cost(n) = Crit(i, j) · delay(n, topology)

+ [1 − Crit(i, j)]b(n)h(n)p(n) (17)

where the first term is for timing cost and the second term is for
wire congestion cost. delay(n, topology) is the delay from the
current partial routing to node n. b(n), h(n) and p(n) are the
base, historical and present costs for n, respectively. Crit(i, j) is
the criticality for each connection and is a tradeoff factor between
timing and wire congestion for a resource node. Crit(i, j) is
defined as

Crit(i, j) = max([MaxCrit−
slack(i, j)

Dmax
]η, 0) (18)

where slack(i, j) is the slack of each connection and Dmax is
the critical path delay, both analyzed by STA. MaxCrit is the
maximum criticality that any connection can have, and η is the
criticality component. Both are the parameters to control how the
slack of a connection impacts the congestion and delay tradeoff in
the cost function. Setting MaxCrit to 0.99 prevents that the nets on
critical path ignore congestion and can achieve a better routability
without affecting circuit timing compared to a MaxCrit of 1.0. In
addition, η of 1 leads to the best circuit timing.

PathCost(n) is the total cost of the path including the current
partial routing tree and the node n, and is defined as

PathCost(n) =
X

l∈path from RT (i) to n

Cost(l) (19)

The total cost of a routing tree includes the cost of current partial
routing tree and the expected cost from node n to target sink j, and
is defined as

TotalCost(n) = PathCost(n)+α·ExpectedCost(n, j) (20)

where the expected cost ExpectedCost(n, j) is based on the as-
sumption that the same type of wires are used for the remaining
routing without congestion. It has been shown that an α of 1.2
leads to the best timing.

5.2 Stochastic Routing ST-PathFinder
In the routing stage, the interconnect estimation occurs when

predicting delay from the current partial routing to the target sink,
and has the highest accuracy within all design stages. On the
other hand, timing analysis is only performed after an entire routing
iteration. Interconnect uncertainty has little impact on one of the key
parameters, Crit(i, j), in (18). We therefore only consider process
variation in SSTA for ST-PathFinder. Similar to the stochastic
placement, routing path delay in the canonical form is calculated by
performing statistical addition for the interconnect switches in that
path. SSTA is then performed to calculate the statistical criticality
for each interconnect edge. We modify (18) as,

SCrit(i, j) = min(SCriticality(i, j)η′

, MaxCrit) (21)

where SCriticality(i, j) is the statistical criticality for each con-
nection, criticality exponent η′ is a constant parameter. In (18),
MaxCrit and "max" operation set the upper and lower bounds
of static criticality to MaxCrit and 0, respectively. Since the
SCriticality is non-negative in nature, we replace the "max" in
(18) with the "min" operation in (21) to set the upper bound for

SCriticality. Based on (21), we then have the statistical cost
function for node n as,

SCost(n) = SCrit(i, j) · delayµ(n, topology)

+ [1 − SCrit(i, j)]b(n)h(n)p(n) (22)

where delayµ(n, topology) is the mean delay from the current
partial routing to node n. delayµ(n, topology) in (22) is same as
delay(n, topology) in (17) since the statistical "max" operation is
not involved in a routing tree. Plugging (22) into (19) and then
(20) gives us the new statistical cost function considering process
variation for an entire routing tree. By using the statistical criticality,
the routing order of sinks in one net and the tradeoff between timing
and wire congestion costs for a resource node are changed. We
experimentally tune η′ to be 0.2 for the best timing yield. All other
parameters in ST-PathFinder are the same as those in PathFinder.

5.3 Experimental Results
Figure 6 shows the normalized nominal, mean and standard de-

viation of post-routing circuit delay obtained by ST-PathFinder
for each benchmark. Each is normalized to its counterpart in
PathFinder. The same deterministic clustering and placement al-
gorithms are used in both flows. Compared to PathFinder, ST-
PathFinder reduces (or achieves as good as) the nominal and mean
delay values (except for misex3 with 8% larger nominal delay)
for most of benchmarks. On the other hand, ST-PathFinder has
little impact on the standard deviation of delay. Note that ST-
PathFinder achieves inferior results especially the nominal delay for
some benchmarks (e.g. 8% nominal delay overhead for misex3)
compared to PathFinder, which is due to the heuristic statistical cost
function adopted in ST-PathFinder. On average, ST-PathFinder re-
duces the nominal, mean and standard deviation of delay by 1.4%
(up to 7.8%), 1.4% (up to 7.8%) and 0.7% (up to 5.2%), respectively,
compared to PathFinder. Compared to clustering and placement
stages, the impact of stochastic routing on timing is much smaller
due to the fact routing stage has the smallest design flexibility.
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Figure 6: Normalized nominal, mean and standard
deviation of circuit delay in ST-PathFinder.

Table 4 compares PathFinder and ST-PathFinder in more details.
When evaluated with 2.5σ guard-banded delay, ST-PathFinder re-
duces the yield loss from 50pp10K for the deterministic flow to
35pp10K. Although SSTA is more expensive than STA, SSTA
or STA is only performed once after one entire routing iteration.
ST-PathFinder reduces the average number of routing iterations re-
quired for a successful routing from 22 to 15 compared to PathFinder



and therefore consumes less runtime. It is due to the fact that ST-
PathFinder uses statistical criticality to achieve a better balance
between weights of timing and wire lengths in the cost function for
each net. Besides of a 4.2% of runtime reduction, ST-PathFinder
also reduces the total wire length after routing by 4.5% due to this
better balanced cost function.

PathFinder ST-PathFinder
(% Diff.)

total wire length 27610 26356 (-4.5%)
# of iterations 22 15 (-32.4%)

nominal delay (ns) 21.2 20.9 (-1.4%)
mean delay (ns) 22.9 22.5 (-1.4%)

standard deviation (ns) 3.41 3.38 (-0.7%)
yield loss (pp10K) 50 35

runtime (s) 70.7 67.7(-4.2%)

Table 4: Routing results (based on the geometric
mean of 20 MCNC designs).

6. INTERACTION BETWEEN CLUSTERING,
PLACEMENT AND ROUTING

The three previous sections study each individual stochastic al-
gorithm in isolation and the impact of each one on timing improve-
ment. Below we combine the stochastic algorithms and study the
interactions between them. The results for yield loss in pp10K
obtained by all eight possible combinations of algorithms are pre-
sented in Table 5. We also summarize other results including the
nominal, mean and standard deviation of circuit delay, and runtime
for all combinations of algorithms in Table 5. The delay values
are presented in the difference compared to the flow consisting of
all deterministic algorithms. The runtime is also normalized with
respect to the deterministic flow.

Cluster D S D D S S D S
Place D D S D S D S S
Route D D D S D S S S

yield loss in pp10K

alu4 33.3 25.2 16.5 36.3 10.7 23.7 16.0 9.2
apex2 39.3 18.9 23.1 35.3 9.4 17.4 15.9 9.6
apex4 65.8 63.9 48.0 37.1 21.4 67.6 43.1 28.8
bigkey 227.5 31.2 111.4 227.5 93.1 35.5 127.2 83.9
clma 32.1 11.9 2.5 26.6 1.9 8.3 3.3 1.5
des 177.8 55.3 87.5 159 43.5 102 93.8 26.2

diffeq 42.9 7.8 2.1 22.9 0.4 8.1 1.7 0.3
dsip 244.4 35.1 74.5 312 66.4 36.1 135 213

elliptic 33.1 1.5 0.5 5.4 0.3 0.6 0.7 0.3
ex1010 95.0 33.9 37.9 27.2 18.9 26.5 12.9 11.3
ex5p 37.8 6.1 8.3 38.3 4.8 16.3 3.6 8.7
frisc 24.0 1.1 17.2 30.1 1.1 1.5 23.6 0.8

misex3 6.7 0.2 0.8 11.6 0.9 0.9 0.6 0.5
pdc 28.5 1.9 1.2 6.9 0.5 5.1 0.4 1.0
s298 33.3 0.4 10.4 21.0 0.3 0.8 15.8 1.0

s38417 74.2 11.3 17.8 40.3 20.0 6.1 11.0 32.5
s38584 48.6 18.2 9.6 44.7 4.5 15.3 26.3 3.7

seq 43.1 35.5 19.4 53.5 17.3 48.7 28.1 24.4
spla 49.3 16.1 16.3 25.8 10.3 8.5 6.6 7.4
tseng 62.1 21.1 29.5 37.2 10.4 14.0 50.7 11.4

Geo. 50.2 9.3 11.8 35.2 5.3 10.3 11.0 5.4

Tnorm 21.2 -3.7% -3.3% -1.4% -6.4% -4.1% -3.6% -6.3%

Tmean 22.9 -5.0% -4.0% -1.4% -5.9% -4.7% -4.0% -6.2%

Tsigma 3.4 -6.4% -6.1% -0.7% -8.8% -6.1% -6.3% -7.5%

runtime 1.0X 0.99X 3.1X 0.96X 3.0X 0.97X 3.1X 3.0X

wire 27610 0.8% 1.3% -4.5% 3.2% -3.4% -3.4% -1.6%

Table 5: Combined results. ‘D’ and ‘S’ stand for
deterministic and stochastic, respectively.

The majority of improvements are achieved during clustering
and placement. The gain mainly comes from modeling intercon-
nect delay uncertainty for clustering and from considering process
variation for placement. When applying stochastic clustering and
placement concurrently, we can achieve a smaller nominal, mean
and standard deviation of delay than applying any one of them
alone. However, there exists some overlap between gains in clus-
tering and placement. On the other hand, routing stage has much

less gain. When applying stochastic routing with other stochastic
algorithms concurrently, the impact of routing is dominated by other
algorithms. It is due to the fact that routing stage has the smallest
design flexibility.

We also present the total wire length achieved by each flow in
Table 5. Compared to the deterministic flow, the stochastic clus-
tering and placement increase total wire length by 0.8% and 1.3%,
respectively. When applying stochastic clustering and placement
concurrently with deterministic routing, the wire length overhead
increases to 3.2%. On the other hand, the stochastic routing re-
duces wire length by 4.5%. When applying stochastic routing
with stochastic placement, clustering or both concurrently, the wire
length is reduced by 3.2%, 3.4% and 1.6% respectively compared
to the deterministic flow7.

When all stochastic algorithms are applied concurrently, the yield
loss is reduced from 50pp10K for the deterministic flow to 5pp10K
measured with the 2.5σ guard-banded delay in deterministic flow
as the cut-off delay. In addition, the stochastic flow reduces the
nominal, mean and standard deviation of delay by 6.3% (up to
17.6%), 6.2% (up to 15.4%) and 7.5% (up to 22.7%) respectively
but takes 3.0X runtime compared to the deterministic flow. Note
that this stochastic flow achieves a larger yield loss for some design,
e.g. dsip, compared to the flow using only stochastic clustering or
placement due to the overhead introduced by stochastic routing for
this particular design. For a good gain with less runtime and little
change to the entire flow, we may apply only stochastic clustering
with deterministic placement and routing. This flow reduces the
nominal, mean and standard deviation of delay by 3.7% (up to
12.5%), 5.0% (up to 13.0%) and 6.4% (up to 31.8%), respectively,
and reduces runtime slightly compared to the deterministic flow.

process variation settings (3σ)

global 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
spatial 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
local 3.0% 6.0% 9.0% 12.0% 15.0% 18.0%

deterministic flow

Tmean (ns) 21.7 22.9 24.4 26.2 28.2 30.2
Tsigma (ns) 1.8 3.4 5.0 6.4 7.8 9.2

stochastic flow

Tmean (ns) 20.3 21.5 23.0 24.8 26.7 28.6
(-6.5%) (-6.2%) (-5.8%) (-5.5%) (-5.3%) (-5.1%)

Tsigma (ns) 1.6 3.1 4.6 5.9 7.2 8.5
(-6.6%) (-7.5%) (-8.1%) (-8.2%) (-8.1%) (-8.0%)

Table 6: Comparison of mean delay and standard
deviation between deterministic and stochastic flows
under various process variation assumptions (based
on the geometric mean of 20 MCNC designs).

Table 6 compares our stochastic flow with the deterministic
flow under various process variation assumptions. Each flow con-
sists of all deterministic or all stochastic algorithms. The 3σ of
global/spatial/local variations are in the range between 5%/5%/3%
and 30%/30%/18%. The mean and standard deviation of delay val-
ues in the stochastic flow are presented in the difference compared
to those in the deterministic flow. The reduction ranges of mean
and standard deviation are from 5.1% to 6.5% and from 6.6% to
8.2%, respectively. It is clear that the stochastic flow consistently
achieves a smaller mean and standard deviation of circuit delay un-
der various process variation assumptions, and therefore result in a
smaller yield loss compared to the deterministic flow.

7
Note that we assume the same routing channel width for both de-

terministic and stochastic flows and the wire length reduction due to
stochastic routing could be converted to routing congestion reduction.



7. CONCLUSIONS AND DISCUSSIONS
In this paper, we have presented the first in-depth study on

stochastic physical synthesis algorithms leveraging SSTA with pro-
cess variation and interconnect delay uncertainty for FPGAs. We
have studied stochastic clustering, placement and routing algo-
rithms as well as the interaction between them. Evaluated by SSTA
with the fully placed and routed layout and measured at the same
clock frequency, the stochastic clustering, placement and routing
reduce the yield loss from 50 failed parts per 10 thousand parts
(pp10K) for the deterministic flow to 9, 12 and 35pp10K respec-
tively. All achieve a smaller mean and standard deviation of circuit
delay compared to the deterministic algorithms. The majority of im-
provements are achieved during clustering and placement. The gain
mainly comes from modeling interconnect uncertainty for cluster-
ing and considering process variation for placement. On the other
hand, routing stage has much less gain.

When applying all stochastic algorithms concurrently, the yield
loss is reduced to 5pp10K (a 10X reduction) with the mean de-
lay reduced by 6.2% and the standard deviation reduced by 7.5%
compared to the deterministic flow. In addition, our stochastic algo-
rithms consistently achieve a smaller mean and standard deviation
of circuit delay, which result in a smaller yield loss, under various
variation assumptions. We also show an overlap existed between
gains of clustering and placement. Stochastic clustering with de-
terministic placement and routing is a good flow with little change
to the entire flow, but the yield loss is reduced from 50pp10K to
9pp10K, the mean delay is reduced by 5.0%, the standard deviation
is reduced by 6.4%, and the runtime is slightly reduced compared
to the deterministic flow. The significant improvement observed by
our study warrants more investigation on stochastic physical syn-
thesis for FPGAs in the future. While its improvement over timing
is small (1.4%), stochastic routing is able to reduce the total wire
length for the same routing channel width by 4.5% and to reduce
runtime by 4.2% compared to deterministic routing.

In the future, we plan to extend our stochastic algorithms to high-
level synthesis and technology mapping to consider interconnect
uncertainty. The statistical criticality calculation used in our paper
is from [4], which assumes independence between timing edges and
may be inaccurate. In addition, we assume Gaussian distribution to
model interconnect uncertainty and process variation. We will also
extend our stochastic algorithms for non-Gaussian SSTA and more
accurate statistical criticality calculation such as that in [5, 6, 25].
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