
Fast Dual-Vdd Buffering Based on
Interconnect Prediction and Sampling ∗

Yu Hu, King Ho Tam, Tom Tong Jing and Lei He
Electrical Engineering Department, University of California, Los Angeles

Los Angeles, CA 90095, USA

hu@ee.ucla.edu, ktam@ee.ucla.edu, tomjing@ee.ucla.edu, lhe@ee.ucla.edu

ABSTRACT
This paper presents fast algorithms for power optimized intercon-
nect synthesis based on interconnect prediction and sampling con-
sidering dual Vdd buffers. We present three pruning techniques
including interconnect prediction based pruning (pre-buffer slack
pruning and predictive min-delay pruning) and sampling (3D
sampling), of which 3D sampling is effective but the other two
improve both efficiency and accuracy of sampling. We also show
that the key to runtime reduction is to reduce the number of propa-
gated options, while the sophisticated data-structures that have good
amortized complexity do not necessarily reduce runtime. We obtain
an empirically linear time algorithm with less than 1% of delay and
power increase but over 50x speedup compared with the most effi-
cient algorithm for dual Vdd buffer insertion. In addition, we further
enhance the power optimized buffered tree construction by intro-
ducing routing grid reduction. We apply our speedup techniques
to buffered tree construction algorithm. Experimental results show
that we obtain over 100x speedup compared with the most efficient
existing algorithms for dual Vdd buffered tree construction.

Categories and Subject Descriptors: B.7.2[Hardware]:
Integrated circuits – Design aids

General Terms: Algorithms, design

Keywords: Interconnect, low power, dual-Vdd, buffer insertion,
routing

1. INTRODUCTION
Interconnect optimization is a critical component of typical VLSI

design flows for timing closure. However, delay-optimal buffer in-
sertion [1] incurs high power overhead. It is possible to achieve low
power buffer insertion to given routed tree topologies through utiliz-
ing timing slacks of tree branches. [2] developed a power-optimal
buffer insertion algorithm. In [2], the number of sub-solutions (i.e.
options) at each node grew in a pseudo-polynomial manner, as com-
putation progressed from sinks to source. The runtime for large nets
was unacceptably high due to the uncontrolled option increase. [3]

∗This paper is partially supported by NSF CAREER award
CCR-0306682/0401682 and a UC MICRO grant sponsored
by Intel. Address comments to lhe@ee.ucla.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SLIP’07, March 17–18, 2007, Austin, Texas, USA.
Copyright 2007 ACM 978-1-59593-622-6/07/0003 ...$5.00.

assumed a large buffer library with near continuous buffer sizes, and
solved the power-optimal buffer insertion problem with 5x speedup
over [2] and negligible loss of delay and power optimality. [4]
proposed a power optimized buffer insertion algorithm which also
considers dual Vdd buffer insertion. They achieved 17x speedup
with no delay penalty and about 1% loss of power optimality over
[2] when single Vdd buffers were considered, and saved an extra
23% power when dual Vdd buffers were considered.

Simultaneous buffer insertion and tree topology generation has
also been studied for delay optimization and more recently for power
optimization. [5, 6] studied the buffered tree construction prob-
lem for multi-sink nets, without considering buffer stations (BS)
or blockages. They constructed interconnect trees while explor-
ing a few topologies for delay minimization, although the buffered
routing was not necessarily delay-optimal. [7, 8] presented two con-
struction approaches to account for blockages and BS and quickly
explored a few alternative routes for the purpose of delay minimiza-
tion. [9] presented a delay-optimal routing algorithm based on maze
routing over Hanan grid which also considered BS and blockages,
while [10] enhanced it with several speed-up techniques. [11] pro-
posed an efficient algorithm for delay optimal buffered tree routing.
[4] presented the first power optimized buffered routing algorithm
considering either single or dual Vdd. It was based on routing over
Hanan grid, and could handle up to a few sinks, same as in [9, 10],
due to the explosion of the number of options.

In this paper, we study the dual Vdd buffering problem for power
reduction, including dual Vdd buffer insertion and sizing (dBIS)
and buffered tree construction (dTree). Based on dynamic pro-
gramming, our proposed algorithms target with orders of magni-
tude speedup of the power optimized dual Vdd buffer insertion and
buffered tree construction problem. Our major contributions in-
clude

1. proposing three speedup techniques for power optimized dual
Vdd buffer insertion based on interconnect prediction and
sampling, which are Pre-buffer Slack Pruning (PSP) extended
from the one presented in [12, 13], Predictive Min-delay
Pruning (PMP), and 3D sampling, of which 3D sampling
is effective but the other two improve both efficiency and
accuracy of sampling. The experimental results show that
the runtime grows linearly with respect to the tree-size;

2. incorporating the fast buffer insertion and grid reduction in
power optimized buffered tree construction to further speedup
the power optimized buffered tree construction algorithm.

The experimental results show that we can obtain more than
50x and 100x speedup over DVB and D-Tree algorithms in [4],
respectively with only 1% worse delay. We also expand the power

95

optimized routing capability to handle 10-sink nets, which cannot
be handled by the D-Tree algorithm in [4].

The rest of the paper is organized as follows. Section 2 presents
modeling and problem formulations for the dBIS and dTree prob-
lem. Our fast buffering algorithms and experimental results for
dBIS and dTree are described in detail in Section 3 and Section 4,
respectively. Section 5 analyzes Fast dBIS and Fast dTree algo-
rithms. The paper is concluded in Section 6.

2. PRELIMINARIES

2.1 Delay, power, and slew modeling
We use a distributed Elmore delay model as in [7, 8, 9, 10]. The

delay d(l) due to a piece of wire with length l is given by

d(l) = (
1

2
· cw · l + cload) · rw · l (1)

where cw and rw are the unit length capacitance and unit length re-
sistance of the interconnect, respectively and cload is the capacitive
loading at the end of the wire.

We also use Elmore delay times ln9 as the slew rate metric [14].
The delay of a buffer dbuf is given by

dbuf = dint + ro · cload (2)

where dint, ro and cload are the intrinsic delay, output resistance
and capacitive loading at the output of the buffer, respectively.

In the context of buffer insertion with upper bound on slew rate,
we observe that slew rates at the buffer inputs and the sinks are
consistantly within a few tens ps of the upper bound. Therefore,
we model buffer delay with negligible error by approximating the
input slew rate using the upper bound as in [14].

We measure interconnect power by energy per switch. The en-
ergy per switch Ew for an interconnect wire of length l is

Ew = 0.5 · cw · l · V 2
dd (3)

We use a signle value Ebuf to represent short-circuit and dynamic
power consumed by a buffer into a single value.

2.2 Dual Vdd Buffering
Dual Vdd buffering uses both high Vdd and low Vdd buffers in

interconnect synthesis. Designs using low Vdd buffers consume
less buffer and interconnect power. Applying this technique to non-
critical paths, we achieve power savings without increaseing the
delay of the overall interconnect tree.

As in [4], we have the following constraint of dual Vdd buffers –
we only allow high-Vdd buffers followed by low Vdd buffers. We
assume that the driver at the source operates at high Vdd and Vdd

level converters are only placed at high Vdd sinks driven by low Vdd

buffers to avoid the power and delay overhead of level converters.

2.2.1 Dual Vdd buffer insertion
We assume that a loading capacitance and a required arrival time

(RAT) qs
n are given at each sink terminal ns. We assume that a driver

resistance at the source node nsrc is given. We also assume that all
types of buffers can be placed only at buffer candidate nodes nk

b .
We use the RAT at the source nsrc to measure delay performance.
Our goal is to minimize the power of the interconnect subject to the
RAT constraint at the source nsrc.

DEFINITION 1. The required arrival time (RAT) qn at
node n is defined as

qn = min
ns∀s

(qs
n − d(ns, n)) (4)

where d(ns, n) is the delay from the sink node ns to node n.

Dual-Vdd buffer insertion and sizing (dBIS) – Given
an interconnect fanout tree which consists of a source node nsrc,
sink nodes ns, Steiner nodes np, candidate buffer nodes nb and a
connection topology among them, the dBIS problem is to find a
buffer placement, a buffer size assignment and a Vdd level assign-
ment solution such that the RAT qsrc

n at the source nsrc is met and
the power consumed by the interconnect tree is minimized, while
slew rate at every input of the buffers and the sinks ns are upper
bounded by the slew rate bound s̄.

2.2.2 Dual Vdd buffered tree construction
We measure the delay and power performance using the same

metric as in the dBIS formulation. Assuming that a floorplan of
the layout is available, we can identify the locations and shapes of
rectangular blockages and the locations of the buffer stations (BS)
which are the allocated space for buffer insertion. Therefore we
have the following problem formulation.

Dual Vdd Buffered Tree Construction (dTree) – Given
the locations of a source node nsrc, sink nodes ns, blockages and
BS, the dTree problem is to find the minimum power embedded
rectilinear spanning tree with a buffer placement, buffer sizes and
a Vdd assignment that satisfy the RAT qsrc

n constraint at the source
node nsrc and the slew rate bound s̄ at every input of the buffers
and the sinks ns.

3. FAST BUFFERING WITH SPEEDUP
TECHNIQUES

A dynamic programming framework is used. Power-optimal so-
lutions are constructed using partial solutions (i.e. options) from
the subtrees. At each node of the given routing tree, a list of op-
tions for the sub-tree rooted at that node is generated by recursively
traversing the tree in a bottom up fashion. In the dBIS problem,
an option Φn at the node n is denoted as Φ = (rat, cap, pwr, θ),
where rat, cap, and pwr are the required arrival time, the down-
stream capacitance and the downstream sub-tree power dissipation
at node n, and θ signifies whether there exists any high Vdd buffers
at the downstream of node n. We say an option Φ is redundant if it
is dominated by another option, and we can safely drop Φ without
losing the optimality of the solution.

DEFINITION 2. In node n, option Φ1 = (rat1, cap1,
pwr1, θ) dominates Φ2 = (rat2, cap2, pwr2, θ), if rat1 ≥
rat2, cap1 ≤ cap2, and pwr1 ≤ pwr2.

The key to an efficient power-optimal buffer insertion algorithm
is to reduce the number of options as early and as much as pos-
sible. The delay-optimal buffer insertion algorithm [1] creates as
many options as the number of nodes, but this is no longer true
in the power-optimal buffer insertion problem. [2] shows that the
growth of the number of options is pseudo-polynomial. The option
sampling technique in [4] bounds the growth of options at each
node, which helps to reduce the number of options at the expense
of optimality. In the following of this section, we first present a
practical and efficient data structure for pruning. Then we propose
an effective speedup approach, 3D sampling. After that, we em-
ploy two predition-based pruning rules, PSP and PMP, to further
improve both accuracy and efficiency. At last, we present the Fast
dBIS algorithm and give the experimental results.

3.1 Data structure for pruning
Advanced data-structures in [12] for delay-optimal buffer inser-

tion cannot be applied to power-optimal buffer insertion as they
only accomodate up to two option labels, which are RAT and ca-
pacitance. The fastest algorithm to-date for power-optimal buffer

96

insertion [4] makes use of augmented orthogonal search trees em-
bedded in a balanced binary search tree (BST), which, however,
does not necessarily benefit the runtime in practice. In this section,
we analyze the statistics of options and provide an efficient and
practical pruning structure (see Figure 1) for dBIS problem. We
maintain a balanced binary search tree BSTn sorted by downstream
capacitance of the options to store a non-redundant set of options at
each node n. Each node opListc in BSTn is a set of (ratn, pwrn)
pairs.

1
0(p , 1

0q), ...2
0(p , 2

0q),

C = 100

1
1(p , 1

1q), ...2
1(p , 2

1q), 1
2(p , 1

2q), ...2
2(p , 2

2q),

1
3(p , 1

3q), ...2
3(p , 2

3q), 1
4(p , 1

4q), ...2
4(p , 2

4q), 1
5(p , 1

5q), ...2
5(p , 2

5q),

C = 81 C = 152

C = 53 C = 94 C = 215

Figure 1: Data structure of dBIS problem

First, we analyze the index of options in pruning structure. Figure
2 shows the runtime of five test cases calculated by DVB in [4] with
power indexed and capacitive indexed data structures, respectively.
We can see that the power indexed data structure is much slower
than the capacitive indexed counterpart. The reason is that, the
number of distinct values of capacitance is generally smaller than
that of power due to the presence of a slew rate bound, which results
in less search trees in the pruning structure used in [4]. Therefore,
we use a capacitive indexed binary search tree for the best runtime.

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

3500

4000

node number

ru
nt

im
e

(s
)

Power indexed

Capacitive indexed

Figure 2: Runtime for power indexed and capacitive
indexed organization

We also find that, using sophisticated orthogonal search trees like
those in [2, 4] only speeds up a very small portion of all opListc

operations while significantly increaseing the runtime overhead of
other cases. On the contrary to [4], which expects a large option
list opListc under each node in BSTn, the opListc list is quite
small. Figure 3 shows the distribution of the number of options in
all opListc for net s4. We can see that most opListc (> 80%)
contain less than 10 options. Therefore, we only need to maintain
the BSTn in our implementation by keeping the (rat, pwr) tuples
in opListc as linked lists, which has the lowest runtime and memory
overhead.

3.2 3D sampling pruning
We extend the power-delay sampling [4] to 3D sampling to further

control the growth of options of each tree node in the bottom-up sub-
solution propagation process. Power-delay sampling in [4] picks
a fixed number of options in each opListc in Figure 1 under each

Figure 3: The distribution of options indexed by
power and capacitance
capacitance, which has been shown to bring significant speedup.
[4] claims that the number of distinct capacitive values is small
when the distance between buffer insertion locations is uniform and
the slew rate bound is tight. However, we observe that this number
is not that small for large testcases. Table 1 shows the statistics
of the percentage of the nodes carrying a large number of distinct
capactive values for 4 nets. We can see from this table that over 50%
of the nodes carry over 50 distinct capacitive values and over 10%
of the nodes carry more than 100 capacitive values. When the scale
of the test case becomes larger, tree nodes carry larger numbers
of distinct capacitive values. Therefore, we need to explore more
effective sampling rules by taking capacitance into consideration.

Table 1: The percentage of the nodes carrying a
large number of distinct capactive values

node# sink# > 100 > 50
515 299 14% 62%
784 499 17% 64%
1054 699 28% 65%
1188 799 33% 71%

In 3D sampling, we get option samples based on power, delay,
and capacitance. The idea is to pick only a certain number of op-
tions among all options uniformly over the power-delay-capacitance
space for upstream propagation. Figure 4 shows (a) pre-sample and
(b) after-sample option sets. Each dot corresponds to an option. In
each tree node, we divide each dimension of the bounding box of
all options into equal segments such that the entire power-delay-
capacitance domain is superposed by a cubic grid. For each grid-
cube shown in Figure 4 (a), we retain only one option if there is
any. By also including the smallest power option and the largest
RAT option for each capacitance value, we obtain the sampled
non-dominated option set shown in Figure 4 (b).

Obviously, we can control the number of options in each tree
node by 3D sampling. That is, given the number of sampling grids
on one dimension, b, the upper bound of option number in a tree
node is b3, and the maximum number of options retained at all nodes
is no more than b3 · n for a n-node tree. As b is a constant, the
growth of options is effectively linear for dBIS problem by using
3D sampling. If we treat the buffer library size as a constant, dBIS
is expected to be solved in linear complexity with 3D sampling.

To test the efficiency of 3D sampling, we conduct some ex-
periments and compare the results with DVB [4], which use only
power-delay sampling. We use 9 test cases, s1–s9, generated by
randomly placing source and sink pins in a 1cm x 1cm box. We use
the GeoSteiner package [15] to generate the topologies of the test
cases. The characters of our testcases are shown in Table 2. We
will use these testcases in the rest of the paper. We also break inter-
connect between nodes longer than 500μm by inserting degree-2
nodes. We set the RAT at all sinks to 0 and the target RAT at the
source to 101% ·RAT∗, where RAT∗ is the maximum achievable
RAT at the source, so that the objective becomes minimizing the

97

50

100

150

−1400

−1200

−1000

−800

1500

2000

2500

3000

3500

4000

4500

5000

capacitance

required arrival time

po
w

er
 d

is
si

pa
tio

n

(a) Before sampling

50

100

150

−1600

−1400

−1200

−1000

−800

2000

2500

3000

3500

4000

4500

5000

capacitance
required arrival time

po
w

er
 d

is
si

pa
tio

n

(b) After sampling
Figure 4: 3D sampling for non-redundant options

power under 1% delay slack. We use the same technology related
settings as in [4]. The slew rate bound s̄ is set to 100ps.

We have made buffers using an inverter cascaded with another
inverter that is four times larger. There are 6 buffers (high Vdd and
low Vdd buffers of 16x, 32x, and 64x) in our buffer library. 20x20
and 20x20x20 sampling grids are used in DVB and 3D sampling,
respectively. (We will evaluate the effectiveness of the size of the
sampling grids in Section3.6). All experiments are performed on
Linux with Intel PM 1.4 Ghz CPU and 1Gb memory.

Table 2 shows the comparison results of both solution quality and
runtime between the power-delay sampling in DVB [4] and 3D sam-
pling. To make comparison clear, we normalize all values to DVB.
Compared with the DVB, 3D sampling can achieve 9x speedup on
average. However, 3D sampling introduces 6% increase for de-
lay1, which makes it prohibitive to simply employ 3D sampling in
practical usage. In the next sections, we will present two additional
pruning techniques. By employing them along with 3D sampling,
we can achieve further speedup associated with improvement on
accuracy.

Table 2: 3D sampling vs. power-delay sampling
net node# sink# speedup delay power
s1 86 19 3x 1.01 1.06
s2 102 29 3x 1.01 0.98
s3 142 49 2x 1.02 0.94
s4 226 99 3x 1.02 1.00
s5 375 199 8x 1.05 0.99
s6 515 299 8x 1.06 1.04
s7 784 499 9x 1.08 0.98
s8 1054 699 10x 1.08 0.99
s9 1188 799 13x 1.08 1.04
ave 497 299 9x 1.06 1.00

3.3 Pre-buffer slack pruning
The aggressive pre-buffer slack pruning (APSP) in [16, 13] prune

dominated options by predicting upstream buffer delay. Therefore,
we “preview” the relative optimality of the current options at a
node, which allows us to drop options that will be dominated after
propagation. This prevents options from being populated at the
upstream and therefore helps to reduce the time complexity.

Pre-buffer Slack Pruning (PSP): Suppose Rmin is the
minimal resistance in the buffer library. For two non-redundant op-
tions Φ1 = (rat1, cap1, pwr1, θ1) and Φ2 = (rat2, cap2, pwr2, θ2),
1In some cases, such as s2 in Table 2, the power dissipation
produced by 3D sampling is even smaller than the optimal
one. Theoretically, power dissipation decreases while delay
slack becomes large, hence it is possible that smaller power
dissipation can be expected with unoptimal approaches.

where rat1 < rat2 and cap1 < cap2, then Φ2 is pruned, if
(rat2 − rat1)/(cap2 − cap1) ≥ Rmin.

Rmin refers to the minimal resistance of the buffer library for
single Vdd buffers, and has to be redefined for dual Vdd buffer
insertion for optimal pruning. To handle dual Vdd buffers, we
choose a proper high/low Vdd buffer resistance RH /RL for PSP.
When there exists some high Vdd buffers in the downstream of the
current option Φ = (rat, cap, pwr, θ), i.e. θ = true, we use RH

in PSP. Otherwise, we use RL. As θ = true indicates no low Vdd

buffer is to be placed in upstream, it is overly aggressive to perform
PSP by using RL (> RH). On the other hand, it makes PSP more
effective (to prune more) by using RL if there is no high Vdd buffer
downstream from Φ. To make the algorithm even faster, we may
use a resistance larger than Rmin (i.e. Aggressive Pre-buffer Slack
Pruning (APSP)). [13] shows that we can get substantial (more than
50%) speedup at a cost of 5% loss of optimality for min-cost (buffer
number) buffer insertion problem. As the number of options in the
dBIS problem is much larger than that of the min-cost problem, we
expect more speedup from using PSP.

3.4 Predictive min-delay pruning
We also try to predict whether the option leads to a valid solu-

tion at the source by introducing the predictive min-delay pruning
(PMP). This rule makes use of analytical formulae to calculate the
lower bound of delay from any node to the source, which assumes
a continuous number of buffers and buffer sizes. If such delay does
not meet the delay specification at the source, the option is dropped
to avoid unyielding option propagation. Consider an interconnect
segment of unit length resistance r and unit length capacitance c.
It is driven by a buffer of size s with unit driving resistance rs, unit
input capacitance cp, and unit output capacitance co. We assume
that the interconnect (with length l) is terminated at the other end
with another repeater of identical size. [14] presented that the unit
length delay is optimal when

lopt =

r
2rs(co + cp)

rc
, sopt =

r
rsc

rco
(5)

where lopt and sopt are the optimal buffer insertion length and the
optimal buffer size, respectively.

The optimum unit length delay delayopt is given by

delayopt = 2
√

rscorc(1 +

r
1

2
(1 +

cp

co
)) (6)

We pre-compute a unit length minimum delay table indexed by

98

buffer, unit length resistance and capacitance, and the path length
from the source to each tree node. We assume high Vdd buffers to
calculate the unit length minimal delay, such that we get a lower
bound when both high Vdd and low Vdd buffers are used. We define
PMP as

Predictive Min-delay Pruning (PMP) – Given a re-
quired arrival time RAT0 at the source, for a tree node v, its up-
stream delay lower bound is given by dlb(v) = delayopt · dis(v),
where dis(v) is the distance of the path from the source to node v in
the routing tree. A newly generated option Φ = (rat, cap, pwr, θ)
is pruned if rat − dlb(v) < RAT0.

We arrive at some interesting observations about PMP through
extensive experiments. We note that PMP prunes more options
when RAT0 is larger (i.e. the delay constraint is tight). Therefore,
PMP essentially prevents unnecessary solution exploration when
there is little room for power optimization. We have also explored
enhancing PMP by considering the theorectical minimum power
buffered interconnect from analytical methods [17]. We define the
following pruning rule:

Predictive Min-power Pruning (p-PMP) – Given two
options α1 = (pwr1, rat1, cap1) and α2 = (pwr2, rat2, cap2),
α1 can be pruned if pwr1+pre pwr1 > pwr2 and rat1+pre d1 <
rat2, where pre pwr1 and pre d1 are the min-power and min-delay
between the source and the current node.

However, our experimental experience shows that the small extra
gain in pruning power from p-PMP does not justify the overhead
of table lookup and additional calculation. To perform p-PMP, we
pre-calculate the unit length min-delay table as in PMP. In addition,
we also need to prepare another table to store the unit length min-
power with respect to the timing slack available, which yields a big
table indexed by Vdd, buffer size and slack. We have performed
a few experiments using the p-PMP rule. For instance, we test s4
(a 99-sink net with 137 nodes) by PMP and p-PMP, respectively.
We have found that p-PMP only prunes 3% more options while
the runtime with the p-PMP rule takes 2x longer. We observe that
the analytical min-power buffered interconnect tends to give a very
loose lower bound for power and is therefore not effective for the
purpose of pruning.

3.5 Fast buffer insertion algorithm for dBIS
problem (Fast dBIS)

We integrate our new pruning rules with the DVB algorithm pro-
posed in [4], which is summarized in the pseudocode of Alg. 1. An
option is denoted as Φ = (c, p, q, θ), where c, p, q and θ correspond
to cap, pwr, rat and θ in Section 3.1, respectively. Moreover, we
use ck

b , Ek
b , V k

b , and db(cload) to denote input capacitance, power,
Vdd level, and delay with output load cload of the buffer bk. dn,v and
En,v(V) are the delay and the power of the interconnect between
node n and node v operating at voltage V . The set of available
buffers Set(B) contains both low Vdd and high Vdd buffers. We
first call Fast-dBIS at the source node nsrc, which recursively
visits the child nodes (line 2) and enumerates all possible options
(line 6–19) in a bottom up manner until the entire tree is traversed.

To speedup the algorithm, we call 3DSampling in line 3 to
apply our 3D sampling heuristic on the returned options from the
children nodes. When a new option is generated (line 9–14), we
test the redundancy of this option based on PMP and PSP (line
15–16). If it is not redundant, we use this option to prune others
based on PSP (line 17–18).

3.6 Studies on the speedup techniques
To evaluate the speedup capability and the effect on the solution

qualities of our speedup techniques (PSP, PMP and 3D sampling),

Algorithm 1: Fast-dBIS (Tn)

1:Set(Φn) = (cs
n, 0, qs

n, false) if n is a sink, else (0,0,∞,false)
2:for each child v of n
3: Set(Φv) = 3DSampling (Fast-dBIS(v))
4: Set(Φtemp) = Set(Φn)
5: set(Φn) = φ
6: for each Φi ∈ Set(Φv)
7: for each Φt ∈ Set(Φtemp)
8: for each buffer bk ∈ Set(B)
9: if bk = φ
10: Vn = VH if θi or θt is true, else VL

11: Φnew=(ci + ct, pi + pt + En,v ,
min(qt, qi − dn,v), θi or θt)

12: else if i. V k
b is high; or ii. V k

b is low and θi is false

13: Φnew=(ci + ct, pi + pt + En,v(V k
b) + Ek

b ,

min(qt, qi − dn,v − dk
b (ci + cn,v)),

θtor(ifV k
b = VH))

14: else goto line 8
15: if i. slew rate violation at downstream buffers; or

ii. Φnew is redundant (by PMP); or
iii. Φnew is dominated by any Φz ∈ Set(Φn) (by PSP)

16: drop Φnew

17: else
18: remove all Φz ∈ Set(Φn) dominated by Φnew(by PSP)
19: Set(Φn) = Set(Φn) ∪ Φnew

20:Return Set(Φn)

we run Fast dBIS by using each of them individually. In PSP, we
use the 16x buffer (high Vdd and low Vdd) to perform pruning. In
PMP, we calculate the unit-length-min-delay with the settings under
65nm technology node [18]. To avoid over aggressive pruning, we
use 105%RAT∗ as the RAT0 in PMP. To compare the solution
qualities, we run power-optimal buffer insertion (PB) algorithm
[2]. (We modified PB to handle dual Vdd buffer insertion.)

Due to the limitation of the computational capability of PB, we
do not give the large scale results. Table 3 shows the comparisons
of runtime and solution qualities. Note that PSP and PMP give
the same solution as PB, so we list the results of PB/PSP/PMP
together in Table 3. From Table 3, we can find that PSP and PMP
(column psp and pmp) can achieve slight speedup over PB (column
PB) without loss of optimality. DVB [4] (column DVB) and 3D
sampling (column sam) can achieve tens of times speedup while
introducing some increase of delay and power (within 3% for small
scale testcases).

We then test Fast dBIS to study on the effectiveness of combining
sampling and the two prediction based pruning rules (PSP and
PMP). 20x20x20 grid are used for 3D sampling. The results are
shown in Table 4, where ‘sam’, ‘ms’, ‘ss’ and ‘all’ stand for 3D
sampling, pmp+3D sampling, psp+3D sampling and combining all
speedup techniques, respectively. We also list the results produced
by employing 3D sampling only in Table 4. To make the comparison
clear, all results (delay and power) are normalized based on solutions
prodcued by DVB. From Table 4, we make the following interesting
observations.

(A) 3D sampling itself (column sam) introduces large increase of
delay and power for large testcases, though it brings substan-
tial speedup.

(B) Both runtime and solution quality are improved by combining
PSP and 3D sampling (column psp+sam). We get over 2x
speedup on average. However, there still exist some increase
of delay and power for large scale testcases (s7, s8 and s9).

(C) When we combine PMP and 3D sampling together (column
pmp+sam), much better solutions are obtained. This is be-
cause PMP prunes many redundant options and keeps a bound
of delay for existing options, so that 3D sampling can always
select option samples from a good candidate pool, which

99

Table 3: Comparisons of individual speedup techniques and baseline algorithm (PB)
runtime (s) RAT∗ (ps) power (fJ)

net PB[2] pmp psp DVB[4] sam PB/pmp/psp DVB sam PB/pmp/psp DVB sam
s1 176 184 146 36 15 -1444.99 -1444.99 -1465.03 13075.5 13077.6 13798.7
s2 329 276 235 62 19 -1600.45 -1600.45 -1619.07 14521 14611.3 14379.8
s3 2356 1759 1416 96 36 -2221.89 -2211.89 -2268.45 20411.1 20452.2 19478.4
s4 >10000 8390 4391 264 50 -1804.55 -1804.55 -1841.09 29641.7 30066.9 28828.4

1 3/4 1/2 1/40 <1/100 1 1.00 1.02 1 1.01 0.97

s5 s6 s7 s8 s9
0

500

1000

1500

2000

2500

testcases

ru
nt

im
e

(s
)

100x100x100
50x50x50
30x30x30
20x20x20

s5 s6 s7 s8 s9
−6000

−5000

−4000

−3000

−2000

−1000

0

testcases

R
A

T
*

(p
s)

Figure 5: The effect of the grid size in sampling

makes the solution quality improved as well as providing
some speedup.

(D) By combining PSP, PMP and 3D sampling together (column
all), Fast dBIS achieves the best performance on both solu-
tion quality and runtime compared with sam, psp+sam and
pmp+sam. Similar to (C), PSP and PMP prune redundancy as
much as possible, which means we can always sample good
candidates.

(E) Both (PSP+3D) and (PMP+3D) can run much faster than
(3D) for small testcases (s1 and s2), but the speedup ratio
degrades for larger testcases. This is because there exist few
options in each node of the buffered tree for small testcases,
and 3D sampling will not work until the sampling bound is
reached.

To further study the effect of grid size in 3D sampling, we change
the sampling grid size and collect the experimental results data,
where PSP and PMP are employed with 3D sampling, and 5 larger
scale testcases are tested. Figure 5 gives us a clear view of the
effect of the different grid sizes for sampling on runtime and solution
quality. We find that the runtime is reduced substantially (20x faster)
when we use sparser sampling grids. On the other side, there is only
little loss of solution quality (within 1%) when the sampling grid
becomes sparser. In practice, we find that a grid size of 20x20x20
can get a good tradeoff between runtime and accuracy. Also, we
find that Fast dBIS shows an effective linear runtime because of the
bound of option number by 3D sampling.

4. SPEEDUP TECHINIQUES FOR DTREE
As the starting point, we build a grid using the “escape node

algorithm” in [10], and then generate an escape grid by looking
for intersection points between buffer stations and the grid lines.
An escape grid, or Hanan grid, is formed by shooting horizontal
and vertical lines from net terminals. The intersections of these
grid lines form Steiner points, which does not allow buffer insertion
in our formulation. We insert buffer insertion points whenever a
grid line hits a buffer station, which are rectangular regions scattered
across the floorplan. In the tree growing process in D-Tree, we need
to record all non-redundant options in each node of the escape gird.
To keep track of the sinks and the other nodes that the current options
covered (to avoid cycles), each option needs to store a sink setS (i.e.,

(a) Original grid (b) After reduction
Figure 6: Escape grid reduction for testcase grid.5

all sinks that are covered by the current option) and a reachability
set R (i.e., all nodes that are covered by the current option). An
option for D-Tree is denoted as Φ = (S,R, rat, cap, pwr, θ), and
we redefine the domination of two options as

DEFINITION 3. In node n, option Φ1 = (S1,R1, rat1,
cap1, pwr1, θ1) dominates Φ2 = (S2,R2, rat2, cap2, pwr2, θ2),
if S1 ⊇ S2, rat1 ≥ rat2, cap1 ≤ cap2, and pwr1 ≤ pwr2.

In each node of escape grid, options are divided into subsets
indexed by covered sink sets. Under each subset, a balanced search
tree (see Section 3.1) is maintained. Once a new option Φ =
(S,R, rat, cap, pwr, θ) is generated in an escape grid node, the
most desirable option pruning strategy is to test the redundancy of
Φ in all subsets indexed by the sink set Si ⊇ S. However, we can
have up to 2n (where n is the number of sinks of the net) sink sets in
a node, which we cannot afford to search for all related sink subsets
for each option creation. In our implementation, we check if any
options in the full sink set (i.e., the sink set that includes all sinks)
dominate Φ, and if Φ dominates any option under its own sink set
S.

In addition to the speedup techniques presented in Section 3, we
also apply the following heuristic to further narrow the search space.

4.1 Escape grid reduction
As the number of options grows exponentially with of the num-

ber of grid nodes, we can reduce the number of options sub-
stantially by using grid reduction. Inspired by PMP proposed in
Section 3.4, we retain those grid nodes p such that dis(p, ni

s) +
dis(p, nsrc) = dis(ni

s, nsrc) for any sink ni
s, where nsrc is the

source and dis(x, y) is the path length from node x to node y.
This rule implies that we delete all grid nodes that are not in any
rectangles formed by any sink-source pairs. This is reasonable
in buffer tree construction since a long-distance wire snaking is
harmful to delay and power. We note that grid reduction may some-
times hamper the routability, as the within-bounding box grids get
completely blocked by obstacles. To tackle this, we make the sink-
source bounding boxes larger in progressive steps until we get a
connected reduced escape grid. We modify the reduction rule as:
retain those grid nodes p such that dis(p, si) + dis(p, source) =
dis(si, source) + j · dieSize/10 for any sink si, where j =
1, 2, · · · . As shown in Figure 6, (a) is a full escape grid for testcase
grid.5 (see Table 5) and (b) is a reduced grid from (a).

100

Table 4: Combine sampling and other pruning rules togeter and compare to DVB
runtime (s) delay power

net DVB sam pmp+sam psp+sam all sam pmp+sam psp+sam all sam pmp+sam psp+sam all
s1 36 15 2 3 1 1.01 1.01 1.01 1.01 1.06 1.00 1.06 0.99
s2 62 19 4 5 2 1.01 1.00 1.01 1.00 0.98 1.01 0.97 1.00
s3 96 36 10 7 4 1.02 1.00 1.01 1.00 0.94 0.98 0.96 0.98
s4 264 50 16 14 6 1.02 1.00 1.01 1.00 1.00 0.99 1.01 1.04
s5 640 71 46 32 20 1.05 1.00 1.03 1.01 0.99 0.99 0.95 0.98
s6 987 101 77 42 34 1.06 1.01 1.03 1.01 1.04 1.00 1.05 1.01
s7 2232 209 135 80 59 1.08 1.00 1.06 0.99 0.98 0.95 1.00 0.99
s8 3427 309 219 127 89 1.08 1.00 1.07 1.00 0.99 1.00 0.95 0.97
s9 5625 327 256 133 95 1.08 1.01 1.08 1.01 1.04 1.03 1.02 1.03
ave 1485 128 85 49 34 1.06 1.00 1.04 1.00 1.00 0.99 1.00 1.00

1 1/10 1/15 1/30 1/50

4.2 Fast buffered tree construction algorithm
for dTree problem (Fast dTree)

We apply our grid reduction technique in addition to the pruning
heuristics to the D-Tree algorithm [4]. The pseudocode is given in
Alg. 2. Our Fast dTree algorithm starts by building a grid using the
escape node algorithm in [10] (line 1). It then performs our escape
grid reduction heuristic (line 2). A queue Q is maintained for
options that need to be propagated. Options stop propagating once
the source is reached. Each time an option is popped from Q, it tries
to propagate to all its neighbors (line 9–28). As we enumerate all
possible topologies of the routing tree in our algorithm, the number
of options grows exponentially, even with pruning strategies. In our
implementation, dominated options under our pruning rules (line
19–20) or filtered options by 3D sampling (line 12) are freed to save
memory.

Algoritm 2. Fast-dTree (nsrc, Set(ns), Set(Blockage), Set(BS))

1: {Set(n),ℵ(Set(n))} = Grid(Set(n), Set(Blockage), Set(BS))
2: Grid Reduction(Set(np),ℵ(Set(n)))
3: for each sink ns ∈ Set(sinks)
4: Φs

n = ({ns}, {ns}, cs
n, 0, qs

n)
5: Set(ns) = {Φs

n}
6: push Φs

n into Q
7: while Q �= φ
8: if (Φcur

n = pop Q) has been dropped, continue
9: for each neighbor nj ∈ ℵ(ncur)

10: for each subset Set(Φj
n)[Si] indexed by sink set Si in nj

11: if Si ∩ Φcur
n .S �= φ

12: {Setsamples} = 3DSampling(Set(Φj
n)[Si])

13: for each option Φj
n ∈ Setsamples

14: if Φj
n.R ∩ Φcur

n .R �= φ
15: form Φnew similar to line 8 to 14 in Fast-dBIS
16: Φnew.R = (Φj

n.R) ∪ (Φnew.R)

17: Φnew.S = (Φj
n.S) ∪ (Φnew.S)

18: if i. slew rate violation at downstream buffers; or
19: ii. Φnew is redundant (by PMP); or
20: iii. Φnew dominated (by PSP)by any

21: Φj
n : (Φnew .S) ⊆ (Φj

n.S), Φj
n ∈ Set(Φj

n)
22: drop Φnew

23: else
24: remove {Φj

n : (Φnew.S) ⊇ (Φj
n.S), Φj

n ∈ Set(Φj
n)}

25: dominated by Φnew

27: Set(Φj
n) = Set(Φj

n) ∪ Set(Φnew)
28: push Φnew into Q if nj �= nsrc

4.3 Experimental results of Fast dTree
For buffered tree construction, we create 6 test cases by randomly

generating source and sink pins in a 1cm × 1cm box. We also
randomly generate blockages so that it consumes approximately
30% of the total area of the box. Horizontal and vertical BS are
randomly scattered in the box so that the average distance between
two consecutive BS is about 1000um. All other settings are the
same as those in Section 3.2.

Table 5 shows the comparison betwen our Fast dTree algo-
rithm and the S-Tree/D-Tree algorithms [4]. The experimental
results show that our Fast sTree(single-Vdd version)/dTree (column

“sTree/dTree”) runs over 100x Faster than S-Tree/D-Tree with so-
lutions, while having only 1% larger power than that produced by
S-Tree/D-Tree. Fast dTree can get a solution for 10-sink net among
426 nodes grids in about one hour, while S-Tree/D-Tree fails to fin-
ish routing after one day. Moreover, we see the speedup obtained
by our grid reduction heuristic from this table. Column “nl” shows
the number of nodes left after grid reduction. Column “unreduced”
shows the runtime without grid reduction. We find that the grid
reduction achieves about 2x speedup for the first 5 test cases. As
for the largest test case (426 nodes and 10 sinks), we cannot even
get a solution without grid reduction. Note again that the largest
examples that can be routed by existing delay-optimal [9, 10] and
power-optimal [4] methodologies are only up to 6-sink nets.

5. ALGORITHMS ANALYSIS
As we have mentioned in the previous section, the key to run-

time reduction is to reduce propagated options in the algorithm.
In Section 3.2, 3D sampling gives a constant upper bound on the
number of options in each tree node. Therefore, the growth of
options in Fast dBIS is effectively linear. Figure 7 shows the num-
ber of non-redundant options generated by DVB [4], PSP+DVB,
PSP+PMP+DVB, and Fast dBIS (PSP+PMP+3D sampling), re-
spectively. We find that the increase of the options in Fast dBIS is
much slower than that in DVB, and it increases in a nearly linear
fashion in Fast dBIS, which demonstrates the effectiveness of 3D
sampling with enhancement by PSP and PMP pruning as discussed
in Section 3. Since each node now has roughly the same number of
options, it therefore takes approximately the same time to propagate
all options from one node to the other, making the runtime growth
linear with respect to the tree size. Figure 8 shows the runtime
growth trend with respect to the number of nodes, and it is clear
that Fast dBIS has a roughly linear runtime complexity.

200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16
x 10

5

Node number

T
he

 n
um

be
r

of
 n

on
−

re
du

nd
an

t o
pt

io
ns

DVB
PSP
PSP+PMP
PSP+PMP+3D

Figure 7: The option increase trends under different
pruning strategies

Applying all proposed pruning techniques and the grid reduction
heuristic in the Fast dTree algorithm helps significantly to reduce the

101

Table 5: Comparison of runtime and performance for buffered tree construction (D-Tree vs. Fast dTree)
test cases runtime(s) RAT*(ps) power(fJ)

name n# s# nl# S-Tree sTree D-Tree dTree unreduced S-Tree sTree S-Tree sTree D-Tree dTree
grid.2 97 2 36 0 0 0 0 0 -223 -224 1492 1492 1430 1430
grid.3 165 3 142 19 1 102 5 8 -604 -608 3908 3456 3907 3456
grid.4 137 4 82 44 2 297 8 23 -582 -583 3426 3426 3131 3131
grid.5 261 5 162 2849 8 5088 37 65 -532 -533 4445 4355 3979 3989
grid.6 235 6 143 5200 25 13745 115 193 397 -399 4919 4718 4860 3718
grid.10 426 10 267 - 2346 - 3605 - - -625 - 7338 - 5915

1 < 1/100 1 < 1/100 1 > 99% 1 < 101% 1 < 101%

200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Node number

R
un

tim
e

(s
)

DVB
PSP
PSP+PMP
PSP+PMP+3D

Figure 8: The runtime trends under different prun-
ing strategies.

number of options during runtime. This is evident from the fact that
the Fast dTree algorithm can handle up to 10-sink nets as opposed to
only a few sink nets in [4], which has been demonstrated in Section
4.3. However, the path search problem is intrinsically an NP-hard
problem, therefore the runtime increases exponentially with the
number of sinks, as the number of options with non-overlapping or
partially-overlapping sink set increases exponentially. Therefore,
Fast dTree remains an exponential algorithm. However, for those
routing nets of over 10 sinks, we can use the hierarchical approach
similar to C-Tree [19], i.e., we decompose the large net into several
small nets (<10 pins), and use our approach to compute the solution
recursively.

6. CONCLUSIONS
We have presented efficient algorithms to buffer insertion and

buffered tree construction problems considering dual Vdd buffers
for power optimization. We have presented three pruning tech-
niques including interconnect prediction based pruning (pre-buffer
slack pruning and predictive min-delay pruning) and sampling
(3D sampling), of which 3D sampling is effective but the other two
improve both efficiency and accuracy of sampling. Also we show
that the sophisticated data-structures that have good amortized com-
plexity do not necessarily reduce runtime, and the key to runtime
reduction is to reduce propagated options. In addition to the above
techniques, we further speedup buffered tree construction by intro-
ducing routing grid reduction. Experimental results show that we
obtain over 50x and 100x speedup compared with the most efficient
existing algorithms for dual Vdd buffer insertion and buffered tree
construction, respectively. In the future, we will further improve
the efficiency of buffered tree construction.

7. REFERENCES
[1] L. P. P. P. van Ginneken, “Buffer placement in distributed

RC-tree networks for minimal Elmore delay,” in ISCAS,
pp. 865–868, 1990.

[2] J. Lillis, C. Cheng, and T. Lin, “Optimal wire sizing and
buffer insertion for low power and a generalized delay
model,” in ICCAD, Nov. 1995.

[3] R. Rao, D. Blaauw, D. Sylvester, C. Alpert, and S. Nassif,
“An efficient surface-based low-power buffer insertion
algorithm,” in ISPD, Apr 2005.

[4] K. Tam and L. He, “Power optimal dual-vdd buffered tree
considering buffer stations and blockages,” in DAC, Jun
2005.

[5] T. Okamoto and J. Cong, “Buffered Steiner tree construction
with wire sizing for interconnect layout optimization,” in
ICCAD, Nov. 1996.

[6] J. Lillis, C. Cheng, and T. Lin, “Simultaneous routing and
buffer insertion for high performance interconnect,” in
GLVLSI Symp., 1996.

[7] C. Alpert, G. Gandham, J. Hu, J. Neves, S. Quay, and
S. Sapatnekar, “Steiner tree optimization for buffers,
blockages and bays,” in ISCAS, May 2001.

[8] J. Hu, C. Alpert, S. Quay, and G. Gandham, “Buffer insertion
with adaptive blockage avoidance,” TCAD, vol. 22, no. 4,
pp. 492–498, 2003.

[9] J. Cong and X. Yuan, “Routing tree construction under fixed
buffer locations,” in DAC, Jun 2000.

[10] W. Chen, M. Pedram, and P. Buch, “Buffered routing tree
construction under buffer placement blockages,” in
ASP-DAC, Jan 2002.

[11] S. Dechu, Z. C. Shen, and C. Chu, “An efficient routing tree
construction algorithm with buffer insertio n, wire sizing and
obstacle considerations,” TCAD, vol. 24, no. 4,
pp. 600–608, 2005.

[12] W. Shi and Z. Li, “An o(nlogn) time algorithm for optimal
buffer insertion,” in DAC, Jun 2003.

[13] Z. Li, C. Sze, C. Alpert, J. Hu, and W. Shi, “Making fast
buffer insertion even faster via approximation techniques,” in
ASP-DAC, Jan 2005.

[14] H. B. Bakoglou, Circuits, Interconnections, and
Packaging in VLSI. Reading, MA: Addison-Wesley, 1990.

[15] D. Warme, P. Winter, and M. Zachariasen, “Geosteiner,” in
http://www.diku.dk/geosteiner, 2003.

[16] W. Shi, Z. Li, and C. Alpert, “Complexity analysis and
speedup techniques for optimal buffer insertion with
minimum cost,” in ASP-DAC, Jan 2005.

[17] K. Banerjee and A. Mehrotra, “A power-optimal repeater
insertion methodology for global interconnects in nanometer
designs,” TCAD, vol. 49, no. 11, pp. 2001–2007, 2002.

[18] Semiconductor Industry Association, ITRS, 2003.
[19] C. J. A. et al, “Buffered steiner trees for difficult instances,”

TCAD, vol. 21, no. 1, pp. 3–14, 2002.

102

