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ABSTRACT
In physical design and optimization for VLSI/ULSI, parameter-

ized model order reduction can be used to handle large design

objectives. In this paper we propose an efficient yet accurate pa-

rameterized model order reduction method EMPIRE for physical

design with multiple parameters. It is the first practical algorithm

using implicit moment matching to handle high order moments

of very large number of parameters. In addition, it can match

the moments of different parameters with different accuracy ac-

cording to their influence on the objective under study. Experi-

ment results show that compared with the best existing algorithm

CORE which uses explicit moment matching for the parameters,

EMPIRE results in 47.8X improved accuracy at a similar run-

time.

Categories and Subject Descriptors: B.7.[Hardware]:
– Integrated Circuits–Design Aids

General Terms: Algorithms, Design, Performance

Keywords: Reduction, Parameter, Sensitivity

1. INTRODUCTION
During the course of physical design and optimization for

VLSI circuits and systems, it is highly useful to know how
certain geometry parameters influence the circuit metrics of
interest. For example, in decoupling capacitor (decap) bud-
geting, people are interested in the relationship between the
voltage droop/bounce at the observation ports and the lo-
cation/size of decaps [1]. Other examples include, but are
not limited to, thermal via sizing [2], interconnection spac-
ing in the parallel interconnect structure design [3], buffer
and wire sizing in clock tree optimization, etc. In those
problems, the sensitivities w.r.t the physical parameters are
essential for the optimization.

The importance of the sensitivities should be credited to
the strong nonlinearity between the optimization objective
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and the parameters. Those optimization problems are usu-
ally solved via sensitivity-based iterative linear or quadratic
programming outlined as follows [1]- [2]: Once the sensi-
tivities are known in each iteration, the nonlinear objective
function f(p1, p2, ..., pn) can be linearized as

Pn
i=1

∂f
∂pi

pi or

quadrated as
P

i,j
∂2f

∂pi∂pj
pipj +

Pn
i=1

∂f
∂pi

pi, where ∂f
∂pi

and

∂2f
∂pi∂pj

are the first order and second order sensitivities, re-

spectively. However, if direct circuit simulation is used in
each iteration to compute the sensitivities, it is inefficient
and limits the capacity of handling large cases.

Two kinds of methods are usually applied for large cases.
One is via hierarchical or multi-level methods [4], and the
other is via parameterized model order reduction. Efficient
though it is, the former method cannot guarantee the quality
of the solution, especially in the presence of local optimas.
Thus, parameterized model order reduction is ideal in the
sense of both efficiency and quality. In fact, the moments of
the parameters of design (referred to as POD moments in
the rest of the paper) are exactly the sensitivities required
for physical optimization. In this paper, we mainly focus on
this method.

Unlike the traditional model order reduction [5,6], param-
eterized model order reduction not only reduces the circuits
to a much smaller size, but also keeps the parameters of de-
sign and thus the sensitivity information [3, 7]. [3] extends
the Arnoldi method used in [5] to match the POD moments.
Nevertheless, the reduced circuit size is constrained by the
number of parameters: the parameter number cannot be
too large to ensure a reasonable model size after reduction,
which makes it impractical for real applications to match
more frequency domain moments. CORE [7] was proposed.
It uses implicit moment matching for frequency domain mo-
ments and explicit moment matching for the POD moments.

However, problems still exist: First of all, when the pa-
rameter number is very large, even simply matching the first
order of the POD moments can still result in a very large
reduced system. Second, not all the PODs are of the same
importance. The objective is usually more sensitive to some
parameters than to others. This is discussed in more de-
tail in Section 3. Accordingly, we need to more accurately
match the moments of those more important PODs. How-
ever, CORE can only evenly match the moments of each
POD. Finally, only matching the first or second order of
POD moments are not accurate. For example, in Figure 1
we study a bus consists of 16 parallel wires (equivalent to
an RC circuit with 5270 nodes), with the spacing between
the first and second wire being treated as the parameter. At
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Figure 1: The output integral w.r.t. the wire spacing

at different reduced order q. The reduced model cannot

matches the origin well when q < 70. This shows only

matching the first or second order POD moments is far

from enough.

reduced orders q=30,50,70, a curve is presented showing the
time domain output integral w.r.t. different spacing ranging
from 1µm to 10µm. As we can see, the reduced curve cannot
match the original when q < 70. However, when we try to
match high order POD moments, CORE becomes unstable
due to the explicit moment matching method it uses.

In this paper we propose an efficient yet accurate model
order reduction method EMPIRE for physical design with
multiple parameters. Compared with CORE, with a small
reduction size, it uses implicit moment matching to match
high order POD moments, which is more accurate than the
explicit moment matching used in CORE; in addition, it
can match the moments of different PODs with different
accuracy according to their influence on the objective. Ex-
perimental results show that compared with CORE and [3],
EMPIRE results in 47.8X improved accuracy at a similar
runtime.

The rest of the paper is organized as follows: In Section
2, we introduce the basic moment matching theorem for the
parameterized model order reduction. In Section 3, EM-
PIRE algorithm are introduced. We present experimental
results in Section 4 and give concluding remarks in Section
5. Proofs of theorems are included in a technical report [8].

2. PRELIMINARIES
Without loss of generality, a linear RLC circuit can be

described by the following modified nodal analysis (MNA)
equation:

(Gx + C
dx

dt
) = Bu

y = LT x, (1)

where G and C (∈ RN×N ) are the state matrices, B (∈
RN×p0 ) and L (∈ RN×q0 ) are the I/O incidence matrices
respectively, x (∈ RN ) is the state variable, u (∈ Rp0) is the
input current vector and y (∈ Rq0) is the output vector.

In physical design and optimization such as the intercon-
nect sizing and spacing, decap budgeting, the state matri-
ces G and C are no longer constant. Instead, they can
be expressed as functions, or more exactly, matrix func-

tions of the parameters of interest. If we denote p1, p2,
..., pr as the parameters, then G = G(p1, p2, ..., pr) and
C = C(p1, p2, ..., pr).

By Talyor expansion and variable renaming on G and C
matrices [3], we can always cast the parameterized system
into the following first order canonical form, where si (1 ≤
i ≤ t) are the new variables, and Ei are their corresponding
constant coefficient matrices.

(E0 + E1s1 + E2s2 + ... + Etst)x = Bu

y = LT x, (2)

In [3], V is computed such that

colspan(V ) = span{∪
mq

m=0 ∪
m−(kp+...+k3)

k2=0 ... ∪m
kp=0

F m
k2,...,kp

(M1, ..., Mp)BM}, (3)

where BM = E−1
0 B, and F m

k2,...,kp
(M1, ..., Mp) is calculated

recursively as discussed in [3]. It is proved that projecting
using the obtained V can match the first mq moments of
each POD.

Once the projection matrix V is found, the reduced system
can be obtained as

(Ẽ0 + Ẽ1s1 + Ẽ2s2 + ... + Ẽtst)x̃ = B̃u

ỹ = L̃T x̃, (4)

where Ẽi = V T EiV , B̃ = V T B and L̃ = V T L.
The size of the reduced circuit, i.e., the number of columns

in the projection matrix V , is proportional to the parameter
number t. When the parameter number is huge, which is
usually the case in VLSI/ULSI design, the reduced system
is still very large. In addition, numerical error is also a
concern when the projection matrix is too large.

In the following section, we will propose the EMPIRE
algorithm to reduce (3) to a projection matrix V with a
much small column number.

3. ALGORITHM
To deal with large number of parameters, we propose our

EMPIRE algorithm which is composed of three steps: pa-
rameter number reduction, projection space collapse and fre-
quency domain moment expansion. The key idea of the first
step is to pick the parameters with relative small perturba-
tion on the original system according to the norms of their
coefficient matrices. The key idea of the second step is to
construct a projection matrix for the reduced parameters
from step 1 and collapse it into a much smaller one with
minimal error. This step has three sub-algorithms to select
from according to the problem size. The key idea of the last
step is to expand the collapsed projection matrix to match
high order frequency domain moments. The main flow of
the EMPIRE algorithm is shown in Figure 2.

Note that for the simplicity of presentation, the algorithm
is described for the circuits with single port. It also works
for circuits with multiple ports by minor changes.

3.1 Parameter Number Reduction
To start with, we have the following definition:

Definition 1. We define the significance of a parameter
si w.r.t. its coefficient matrix Ei as

SIG(si) = ||Ei||2esi, (5)
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Figure 2: The overall flow for EMPIRE algorithm.

where ||Ei||2 is the square-norm of Ei
1, and esi is an estima-

tion of si. esi does not need to be very accurate, for example
either the expectation or the maximum value of si can be
used. Practically, they are known prior to optimization.

The algorithm for Parameter Number Reduction is out-
lined in Algorithm 1. It computes Aver, the average of the
significance for all the parameters. Those parameters that
have coefficient matrices with norm smaller than ε × Aver
are removed when constructing the projection matrix. Here
ε is user-specified: smaller ε results in smaller parameter
number with less accuracy, while larger ε results in larger
parameter number with higher accuracy.

Algorithm 1 Parameter Number Reduction
INPUT: Total parameter number t and the coefficient matrices Ei

(1 ≤ i ≤ t) for each parameter;
OUTPUT: Total parameter number w after parameter number
reduction and the parameters ŝ1,...,ŝw ;
INITIALIZATION: Sum=0, j=0;;
for i=1; i ≤ t; i++ do

Sum=Sum+SIG(si);
end for

Aver=Sum/t;
for i=1; i ≤ t; i++ do

if ||Ei||2 ≥ ε × Aver then

ŝj = si;
j + +;

end if

end for

w = j;

The correctness of this algorithm is guaranteed by the
following theorem:

Theorem 1. Let µ be any eigenvalue of E0+Eisi(E0, Ei ∈
RN×N ) and λ be the eigenvalues of E0. We have

min
λ∈λ(E0)

|λ − µ| ≤ k||Ei||2si ∝ SIG(si), (6)

where k is a constant.

Theorem 1 indicates that the distance between any eigen-
value of E0 and E0 + Eisi is proportional to SIG(si). Since
eigenvalues explicitly decide the behavior (such as time con-
stant) of the circuit, it is natural that parameters with smaller
significance have smaller impact on the circuit performance.

1
The 2-norm of a vector is defined as the square root of the el-

ements’ square sum, while the 2-norm of a matrix A is defined as

supx6=0

||Ax||2
||x||2

Theorem 1 also indicates that the perturbation on the eigen-
values caused by the variation of a parameter is proportional
to the norm of that parameter’s coefficient matrix. With
proof for Theorem 1 in a technical report [8], we validate it
on 20 RC meshes, each with 10000 nodes and 5000 parame-
ters (pitch width). We perturb the 2-norm of the coefficient
matrix by multiplying it with a constant number and mea-
sure the perturbation of the output by integrating the nor-
malized absolute difference |yn − yo|/max|yn − yo|, where
yn is the original output and yo is the output after per-
turbation. We finally average the normalized perturbation
over all the meshes. The relationship between the 2-norm
of the coefficient matrices of the parameters and the pertur-
bation of the output is shown in Figure 3. It is clear that
the perturbation increases significantly with the 2-norm of
the coefficient matrix, which experimentally validates the
Theorem 1.
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Figure 3: The relationship between the 2-norm of the

coefficient matrix and the output perturbation.

3.2 Projection Space Collapse
After the parameters with the large significance are se-

lected, we can construct a projection matrix V based upon
the reduced parameters. Similar method as in [3] is used to
construct this projection matrix. Usually V still has a large
column number. By Projection Space Collapse, we reduce
the column number of V (∈ RN×p) by finding a matrix V̂
(∈ RN×q0 ) which has much smaller column number than V
(i.e.,q0 � p), while they are as ”close” as possible.

To quantitatively measure how ”close” two matrices are,
we have the following definitions:

Definition 2. The distance from a vector r to the space
spanned by the column vectors of V̂ , colspan(V̂ ), is defined
as

d(r, V̂ ) = min
∀v̂∈colspan(V̂ )

||r − v̂||2, (7)

where v̂ is any vector in colspan(V̂ )

Definition 3. The weighted distance between colspan(V )

and colspan(V̂ ), colspan(V̂ ), is defined as

D(V, V̂ ) =

pX

i=1

Wid(V (i, :), V̂ ), (8)

where V (i, :) is the i-th column in V , and Wi are the weights.

Note that the weights in Definition 3 are used to reflect
the significance difference between PODs as well as the dif-



Algorithm NP sLS sBA
Runtime Slow Medium Fast
Accuracy High Medium Low

Table 1: Runtime and accuracy comparison between

nonlinear programming, sequential Least Square and se-

quential Barycenter Allocation.

ference between different moment orders, i.e.,

W (ŝ1, ŝ2, ..., ŝk, i) = (
kX

j=1

SIG(sj)/(k ∗ i), (9)

where W (s1, s2, ..., sk, i) is the weight for the i-th joint mo-
ment of any k parameters s1, s2, ..., sk. For example, the
weight for the 1st moment of p1, M1Bm, is simply SIG(s1),
and the weight for the 2nd joint moment of (p1, p2), (M1M2+
M2M1)Bm, is (SIG(s1) + SIG(s2))/4. We do not use the
arithmetic average here because the lower order moments
are more critical in terms of accuracy, and thus should have
heavier weights. The weights can also be user-defined, re-
flecting the importance of the corresponding parameter.

Along with the definitions, in order to minimize the total
error caused by the Projection Space Collapse, the following
optimization problem needs to be solved:

Formulation 1. Find an orthonormalized matrix V̂ (∈

N × q0), such that D(V, V̂ ) is minimized.

In the following, we propose three methods to solve the
problem: an exact algorithm via nonlinear programming
(NP); a greedy algorithm via sequential least square (sLS);
and a greedy algorithm via sequential Barycenter Alloca-
tion (sBA). The three methods offer a spectrum of tradeoffs
between runtime and accuracy, as shown in Table 1.

3.2.1 Exact Algorithm via Nonlinear Programming
If we denote V̂ = [v̂1, v̂2, v̂3, ..., v̂q0 ] with v̂i indicating the

i-th column in V̂ , they constitute an orthonormalized basis
of colspan(V̂ ) since V̂ is orthonormalized. We also denote
v̂q0+1, v̂q0+2, ..., v̂N as the basis of the subspace orthogonal

to colspan(V̂ ). To cast the problem formulation into a math-
ematical problem, we have the following theorem:

Theorem 2. The distance defined in (7) can be expressed
as:

(
NX

i=q0+1

(v̂T
i r)2)1/2. (10)

By Theorem 2, the original problem can be casted into
the following nonlinear optimization problem:

min
v̂i∈RN

pX

i=1

Wi(
NX

j=q0+1

(v̂T
j vi)

2)1/2

s.t. v̂T
i v̂j = δij , q0 + 1 ≤ i, j ≤ N, (11)

where Wi is the weight for the moment presented by the i-th
column in V from (9), N is the circuit size, q0 is the reduced
size, v̂i and vi are the column vectors of the orthogonormal-
ized projection matrices V̂ and V , respectively, and δi,j is
the Kroneck delta function, i.e.,

δi,j =


1 if i = j
0 if i 6= j

. (12)

By solving this optimization problem, we can obtain a set
of basis v̂q0+1, v̂q0+2, ..., v̂N . Then we can find q0 vectors
orthogonal to them by solving the under-determined linear
equation:

[v̂q0+1, v̂q0+2, ...v̂q0+n]T x = 0, (13)

This equation should have q0 non-trivial solutions. Then ap-
ply Gramm-Schmidt orthogonal (GSO) transformation tech-
nique, we can obtain the q0 basis v̂1, v̂2, ...v̂q0 we want.

Note that if we minimize the norm-square instead of norm,
then (11) becomes a QCQP (Quadratic Constrained Quadratic
Programming) problem with a total number of (N − q0)N
variables after we insert v̂i = [xi,1, xi,2, ..., xi,N ]T (q0 + 1 ≤
i ≤ N).

We can solve the QCQP and obtain the projection matrix.
Exact and Accurate as it is, when the original circuit size N
is large, this method becomes impractical in terms of run-
time. In the following, we present two alternative heuristic
methods for speedup.

3.2.2 Greedy Algorithm via Sequential Least Square
The heuristic methods in this section and Section 3.2.3 ex-

ploit the other interpretations of a column in a matrix: it can
be viewed either as a function where the first N-1 elements
indicate the coordinates, and the the last element indicate
the value, or it can be viewed as a point in the N-dimension
space. In this section, we use the first interpretation.

Instead of deciding the projection matrix V̂ directly, we
use a sequence of N-dimension least square problems (sLS)
to solve it, with a total iteration number of q0. In each
iteration, we look for a line to fit the data set given by all
the column vectors in the original projection matrix V . We
treat the first N − 1 dimensions as independent variables,
and the last dimension as dependent variable, we try to find
a linear relationship to fit the data set:

vn = a1v1 + a2v2 + ... + aN−1vN−1, (14)

such that the least square error is achieved, i.e.,

Φ =

pX

i=1

Wi(vN,i−(a1v1,i+a2v2,i+...+aN−1vN−1,i))
2 = min,

(15)
where vk,j denotes the element at the k-th row and j-th
column of the original projection matrix V .

Note that a1,a2,... and aN−1 are unknown coefficients
while all the other variables are given. To obtain the least
square, the unknown coefficients a1,a2,..., and aN−1 must
yield zero first order derivatives, i.e.,

8
>><
>>:

∂Φ
∂v1

= 2
Pp

i=1 Wiv1,i(vN,i −
Pp

j=1 uj) = 0
∂Φ
∂v2

= 2
Pp

i=1 Wiv2,i(vN,i −
Pp

j=1 uj) = 0

. . .
∂Φ

∂vN−1
= 2

Pp
i=1 WivN−1,i(vN,i −

Pp
j=1 uj) = 0

, (16)

where

uj = vN,j − (a1v1,j + a2v2,j + ... + aN−1vN−1,j ) (17)

Expanding the above equations, we have

Ax = B, (18)



where

A =

0
B@

Pp
i=1

Wiv2
1,i · · ·

Pp
i=1

Wiv1,ivN−1,i
Pp

i=1
Wiv1,iv2,i · · ·

Pp
i=1

Wiv2,ivN−1,i

.

.

.

.
.
.

.

.

.
Pp

i=1
WivN−1,iWiv1,i · · ·

Pp
i=1

Wiv2
N−1,i

1
CA (19)

,

x =

0
BBB@

a1

a2

...
aN−1

1
CCCA , (20)

and

B =

0
BBB@

Pp
i=1 Wiv1,ivN,iPp
i=1 Wiv2,ivN,i

...Pp
i=1 WivN−1,ivN,i

1
CCCA (21)

After the direction of the line [a1, a2, ..., aN−1,−1] is found,
those column vectors are transformed to be orthogonal to
the optimal vector by GSO. The physical explanation of
this step is to remove the projections on the newly gener-
ated vector. By doing so, the vectors in V and in V̂ are
always orthogonal and thus cannot be represented by the
linear combination of the column vectors in current V̂ . The
algorithm is outlined in Algorithm 2.

Algorithm 2 Sequential Quadratic Programming

INPUT: Original Projection Matrix V = [v1, ..., vm] ∈ RN×p, re-
duced order q0;
OUTPUT: Projection Matrix V̂ (∈ RN×q0 );

INITIALIZATION: V̂ = Φ;
for i=1; i ≤ q0; i++ do

SOLVE: LS problem (18);
for j=1;j < i;j++ do

v̂ = v̂ − (v̂T
j v̂)v̂j (1);

end for

if ||v̂||2 ≤ ε then

Continue;
end if

for j=1; j < i; j++ do

v̂j = v̂j − (v̂T
j v̂)v̂ (2);

end for

v̂ = v̂
||v̂||2

;

V̂ = [V̂ , v̂];
end for

3.2.3 Greedy Algorithm via Sequential Barycenter
Allocation

The method via sLS still requires solving a sequence of
N dimension linear equation, the complexity of which is
O(N3). This is enough for medium-scale problems. How-
ever, when dealing with circuits with millions of nodes, it
is still unacceptable. To this end, by exploiting the second
interpretation mentioned at the beginning of Section 3.2.2,
we propose a barycenter allocation based approach (sBA),
which is has a linear complexity.

The main idea for sBA is that instead of looking for the
line with least square method, we try to locate a point in
the N-dimension space that has the smallest sum of distance
sum to the points represented by the column vectors in V .
We have the following theorem:

Theorem 3. The barycenter of a set of points x1, x2, ..., xk

with weights W1, W2, ..., Wk, i.e., the point

x =

kX

i=1

Wixi (22)

minimizes the weighted sum of the square-norm distance to
all the points.

Theorem 3 indicates that in each step we only need to find
out the barycenter of the points represented by the column
vectors in V with weights computed from (9). The algorithm
is outlined in Algorithm 3. Compared with Algorithm 2, the
only difference is that the quadratic programming is replaced
by barycenter computation.

Algorithm 3 Sequential Barycenter Allocation

INPUT: Original Projection Matrix V = [v1, ..., vm] ∈ RN×p, re-
duced order q0;
OUTPUT: Projection Matrix V̂ (∈ RN×q0 );

INITIALIZATION: V̂ = Φ;
for i=1; i ≤ q0; i++ do

COMPUTE: v̂ = 1

p

Pp
i=1

Wivi;

for j=1;j < i;j++ do

v̂ = v̂ − (v̂T
j v̂)v̂j (1);

end for

if ||v̂||2 ≤ ε then

Continue;
end if

for j=1; j < i; j++ do

v̂j = v̂j − (v̂T
j v̂)v̂ (2);

end for

v̂ = v̂
||v̂||2

;

V̂ = [V̂ , v̂];
end for

3.3 Frequency Domain Moment Expansion and
Projection

After Projection Space Collapse, a projection matrix V̂ (∈
RN×q0 ) is obtained with small column number. In this step,
we try to improve the accuracy by matching more moments
in frequency domain.

The algorithm is outlined in Algorithm 4. The key step
in it is from the following theorem:

Theorem 4. The projection matrix V obtained in Algo-
rithm 4 can match up to the q-th order of the frequency do-
main moments.

Furthermore, we choose to match only the q-th order fre-
quency domain moments, instead of other q-th order joint
frequency-POD moments due to the following theorem:

Theorem 5. Among all the q-th order moments si1
1 si2

2 ....
(i1 + i2+, ... = q), the frequency domain moments sq

j (sj is
the frequency variable) has the maximum influence on the
output accuracy.

After the final projection matrix V is obtained, we can use
(4) to project the original system into a much smaller one.

3.4 Summary
In summary, in the first step Parameter Number Reduc-

tion, we reduce the number of total parameters by specifying
ε. Then in the second step Projection Space Collapse, we ob-
tain a small projection matrix V̂ (∈ RN×q0 ) which has the
minimum distance to the original one by specifying the col-
umn number p of the projection matrix to compute directly,



Algorithm 4 Frequency domain moment expansion

INPUT: Projection matrix V̂ ∈ RN×q0 , reduced order q, and Es,
the coefficient matrix for the frequency variable s;
OUTPUT: Projection matrix V (∈ RN×q);

INITIALIZATION: V = V̂, R = BM ;
for i=0;i¡q;i++ do

R = E
−1

0
EsR;

R0=orthogonormalize R w.r.t. V;
V = [V R′];

end for

and the column number q0 of the projection matrix after col-
lapse. We have three algorithms to choose from. In the last
step Frequency Domain Moment Expansion, we match high
order frequency domain moments by specifying the order q
of the frequency domain moments to match.

4. EXPERIMENTAL RESULTS
In this section, we present numerical experiments to demon-

strate the efficiency and accuracy of the EMPIRE algorithm.
All the algorithms are implemented in MATLAB, and run
on a Linux workstation (P4 2.66G CPU and 2G RAM). We
use different sizes of extracted RC meshes from industrial
applications. We first compare the three algorithms pro-
posed in this paper, and then compare our hybrid algorithm
with the method in [3] and CORE [7].

For EMPIRE, we set the threshold ε = 0.5 and compute
the projection matrix V to match the parameters to their
6-th order moments. Then we collapse it to q0 = w, where
w is the reduced parameter number. The column number q
of the final projection matrix V varies in the experiments.

4.1 Comparison between sBA, sLA and NP
Figure 4 demonstrates how the distance between the orig-

inal projection matrix and the reduced one generated by
EMPIRE changes with the column number of the reduced
one (i.e., the reduced circuit size). The experiments are run
on 20 RC meshes, each with 10000 nodes and 5000 param-
eters (pitch width). For each of the three projection space
collapse methods, the results are averaged over the 20 cases.
As we expect, the distance drops down with the increase of
the column number in the reduced projection matrix. When
the reduced size is large enough, the distance converges to 0.
This validates the algorithms for projection space collapse.
In addition, note that the nonlinear programming method
converges the fastest, and the sequential barrier allocation
method converges the slowest.

4.2 Comparison with Existing Work
Figure 5 and Figure 6 show the time and frequency do-

main responses for a power grid with 20, 000 nodes and 5000
parameters. The pitch widths are the parameters of design
and the attenuated sine waveforms are applied at the input
ports. For [3], we match all the moments up to the second
order. For CORE and EMPIRE, we match the parameter
moments up to 4th order, and the frequency domain mo-
ments up to q = 200. As we can see from the figures, EM-
PIRE matches the original well, better than both CORE
and [3].

Figure 7 shows the output response v.s. a randomly se-
lected pitch width with 30% variation around the nominal
value 100µm. As we can see from the figure, EMPIRE ex-
actly matches the original, better than CORE and [3] do.
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Figure 4: The distance between the collapsed matrix

and the original matrix versus the reduced order.
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Figure 5: The time domain waveform comparison be-

tween EMPIRE, CORE and [3]. EMPIRE is identical to

the original.
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Node # P # Reduced Size model reduction time (s) simulation time (s)
[3] CORE EMPIRE [3] CORE EMPIRE [3] CORE EMPIRE

1400 600 940 40 40 1262 196 202 982.4 64 64
2450 1000 1880 60 60 9766 424 518 7832.1 129 128
5800 2600 N/A 80 80 N/A 1426 1577 N/A 224 226
7930 4800 N/A 100 100 N/A 2292 2784 N/A 312 311
12500 8400 N/A 120 120 N/A 4213 4910 N/A 471 471

Table 2: Runtime comparison between [3], CORE and EMPIRE.

Table 2 compares the runtime between the three methods
on RC meshes of different scales. EMPIRE has a similar
runtime compared with CORE, and is 18.3X faster than [3]
for model reduction time and 61.2X faster for simulation
time. In addition, [3] cannot finish large examples.

Figure 8 plots the runtime w.r.t. original circuit size for
EMPIRE. The parameter number for each circuit is equal
to 60% of the node number. All the circuits are reduced
to the same size q = 60. Clearly the runtime for EMPIRE
can be divided into three regimes, corresponding to the three
different projection space collapse methods NP (A), sLS (B)
and sBA (C). In regime A, the runtime increases rapidly
with the original circuit size, with the gain of high accuracy;
and in regime C the runtime increases slowly, at the cost of
low accuracy.
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Figure 7: The output response v.s. a randomly selected

pitch width. EMPIRE is close to the original.

Finally, we study the scalability for the EMPIRE algo-
rithm. We use an RC mesh with 10000 nodes and 5000
parameters, and reduce it to different sizes from 100 to 1000
by EMPIRE and CORE. [3] is not included here because
the reduced size is not controllable. Figure 9 shows the time
domain waveform relative error for EMPIRE and CORE,
respectively. EMPIRE always has the minimum waveform
error. At order q = 600, EMPIRE is 47.8X more accurate
than CORE. This should be fully credited to the higher mo-
ment matching accuracy as well as the numerical stability
from the implicit moment matching.

5. CONCLUSIONS
In this paper we propose an efficient yet accurate parame-

terized model order reduction method EMPIRE for physical
design and optimization with large circuits and multiple pa-
rameters. We compare EMPIRE with the best existing work
CORE. Experimental results show that EMPIRE results in
47.8X improved accuracy at a similar runtime.
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