
Power Optimal Dual-Vdd Buffered Tree Considering Buffer
Stations and Blockages

ABSTRACT
This paper presents the first in-depth study on applying
dual Vdd buffers to buffer insertion and multi-sink buffered
tree construction for power minimization under delay con-
straint. To tackle the problem of dramatic complexity incre-
ment due to simultaneous delay and power consideration and
increased buffer choices, we develop a sampling-based sub-
solutions (i.e. options) propagation method and a balanced
search tree based data structure for option pruning. We
obtain 17x speedup with little loss of optimality compared
to the exact option propagation. When dual Vdd buffers are
considered, our algorithm reduces power by 23% at the min-
imum delay specification compared to single Vdd buffer in-
sertion. Moreover, compared to the delay-optimal tree using
single Vdd buffers, our power-optimal buffered tree reduces
power by 7% and 18% at the minimum delay specification
when single Vdd and dual Vdd buffers are used respectively.

1. INTRODUCTION
Aggressive scaling of VLSI circuits makes interconnects

the performance bottleneck, and buffer insertion is used ex-
tensively to reduce interconnect delay at the expense of more
power dissipation. [1] develops a power-optimal buffer inser-
tion algorithm to meet the delay specification. In addition,
the buffered tree construction problem for multi-sink nets
has also been studied in [2, 3], without considering buffer

stations (BS) or blockages. [4, 5] present two construction
approaches to account for blockage avoidance and BS and
quickly explore a few alternative routes for the purpose of
delay minimization. [6] presents an optimal delay routing
algorithm that also considers BS and blockages while [7] en-
hanced it with several speed-up techniques. All the buffered
tree construction methods do not consider power explicitly.

Recently, Vdd-promgrammble buffers have been used to
reduce FPGA interconnect power [8]. As buffers are pre-
placed, the dual Vdd buffer routing is simplified to dual
Vdd assignment. However, dual-Vdd buffer insertion and
buffered tree construction for ASIC designs is more com-
plicated and have not been studied. We present the first
in-depth study on applying dual Vdd buffers to buffer inser-
tion (DVB) and multi-sink buffered tree generation (D-Tree

) considering both BS and blockages for power minimization
under delay constraint. We develop a sampling-based sub-
solutions (i.e. options) propagation method and a balanced
search tree based data structure for option pruning to re-
duce computational complexity. We obtain a 17x speedup
with little loss of optimality over [1] which has exact op-
tion propagation. Experimental results show that our DVB

algorithm reduces power by 23% over [1] at the minimum
delay specification. Moreover, our D-Tree algorithm reduces
power by 7% and 18% at the minimum delay specification
over [6, 7] when single Vdd and dual Vdd buffers are used
respectively.

Section 2 discusses the dual Vdd buffer modeling, the DVB

and the D-Tree problem formulations. Section 3 and 4 give
the details of the algorithms for solving the DVB and the
D-Tree problems and their respective experimental results.
We conclude the paper in Section 5.

2. MODELING AND PROBLEM FORMU-
LATION

2.1 Delay, Slew Rate and Power Model
We use distributed Elmore delay model as in [6, 4, 7, 5].

The delay due to a piece of wire of length l is given by

d(l) =

�
1

2
· cw · l + cload � · rw · l (1)

where cw and rw are the unit length capacitance and resis-
tance of the interconnect and cload is the capacitive loading
at the end of the wire. We also use Elmore delay times ln 9
as the slew rate metric [9]. The delay of a buffer is given by

dbuf = dint + ro · cload (2)

where dint, ro and cload are the intrinsic delay, output re-
sistance and capacitive loading at the output of the buffer
respectively. We obtain ro and dint for both high Vdd and
low Vdd buffers, and we observe that both values are higher
for low Vdd buffers.

In the context of buffer insertion with upper slew rate con-
straint, we observe that slew rates at the buffer inputs and
the sinks are always within up to a few tens ps of the up-
per bound. Therefore we model buffer delay with negligible
error by assuming input slew rate close to the upper bound
To illustrate, we consider a rather loose slew rate bound
ŝ = 100ps, which is 20% of the clock period for a 2Ghz
clock. Using the formula for delay optimal buffer insertion
length lopt [10] for a single interconnect wire and the infor-
mation of the 65nm technology node [11] that is summarized
in Table 1, we get lopt = 3924µm. On the other hand, from
Equation (1) and assuming cload = 0 and infinite size driver
at the input of the wire, we have lslew = 3073µm, which
is the largest length of an unbuffered interconnect without
slew rate violation and is much smaller than lopt. Consider-
ing power optimality increases the optimal insertion length

lopt [10], while considering non-zero wire loading cload, addi-
tional delay due to finite driver strength and a tighter slew
rate bound further decreases lslew. Therefore we tend to
insert buffers in order to the satisfy the slew rate bound,
which results in close-to-bound slew rates.

Settings Values
Simulators QuickCap [12] (interconnect)

BSIM 4 + SPICE [13] (device)
Interconnect rw = 0.186Ω/µm, cw = 0.0519fF/µm

(65nm, global, min space and width)
Buffer cin = 0.47fF ,

(min size) Vdd = 1.2V : ro = 4732Ω, dint = 72.0ps
Vdd = 0.9V : ro = 5364Ω, dint = 97.7ps

Table 1: Settings for the 65nm global interconnect.

Note that more accurate slew rate and delay models that
support bottom up (i.e. sink-to-source) calculation such as
[14] can be used instead. The use of simpler delay and slew
metrics here is for the ease of implementation and explana-
tion only.

We measure interconnect power by energy per switch. The
energy per switch for an interconnect wire of length l is

Ew = 0.5 · cw · l · V 2

dd (3)

We collapse per switch short-circuit and dynamic power con-
sumed by a buffer into a single value Ebuf , which is a func-
tion of both Vdd and buffer size. We observe that low Vdd

buffers have a much smaller Ebuf than the same-sized high
Vdd counterparts. On the other hand, since the leakage com-
ponent of the total energy consumption depends very much
on the operating frequency and the switching activity, we
choose not to include leakage power in our study.

2.2 Dual Vdd Technique
Dual Vdd buffering uses both high Vdd and low Vdd buffers

in interconnect synthesis. Designs using low Vdd buffers con-
sume less buffer Ebuf and interconnect (Equation 3) power.
Applying this technique to non-critical paths, we achieve
power saving without worsening the delay of the overall in-
terconnect tree.

We only allow high Vdd buffers followed by low Vdd buffers
but not the reverse except at right before the sinks. A high
Vdd buffer can drive a low Vdd buffer, but a low Vdd buffer
driving a high Vdd one may cause a large leakage power.
Therefore, a Vdd-level converter must be inserted between
the low Vdd buffer and its high Vdd fanout buffers. We as-
sume that the driver at the source operates at high Vdd and
Vdd-level converters are placed only at the sinks driven by
low Vdd buffers. We do not consider Vdd-level converters
explicitly in our algorithm, which reduces power and delay
overhead that is introduced by using a large number of Vdd-
level converters. Considering a simple case in Figure 1, the
configuration in (a) must have a larger power than that in
(b) due to the the level converter and the fact that the low
Vdd buffer instead of the high Vdd buffer is driving the load
Cl. To have the delay of case (b) larger than that of (a), we
make

(RL
b −RH

b)·Cl+RH
b ·CL

b −RL
b ·CLC−RLC ·CH

b −dLC ≥ 0 (4)

where dLC is the intrinsic delay of the level converter and
all other parameters are shown in Figure 1. By trying all
combinations of buffer sizes (16x, 32x, 64x in our study)

and by using the parasitic values for a properly sized level
converter, we have Cl to be at least 0.5pF , or equivalently
a 9mm long global interconnect worth of capacitance, for
Equation (4) to become true, which is extremely unlikely in
any buffered interconnect design. Therefore (b), which has
no level converter, is very likely to be a superior design than
(a). This provides us with the insight about excluding level
converters in our study, which saves runtime by considering
a smaller and more productive solution space.

 ddHigh V bufferddLow V buffer

 ddHigh V buffer

Cb
H

Cb
H

Rb
L

Cb
L

Rb
H

Rb
H

Cl

Cl

RCL

CCL

l1 l2

l1l2

ddLow V buffer

Cb
L

Rb
L

Level Converter

(a)

(b)

Figure 1: Demonstrating level converter overhead.

2.3 Dual Vdd Buffer Insertion Problem
We assume that the loading capacitance and the required

arrival times (RAT) qs
n are given at all sink terminals ns. We

assume that the driver resistance at the source node nsrc is
given. We also assume that all types of buffers can be placed
only at the buffer candidate nodes nk

b . We use the RAT at
the source nsrc to measure delay performance. Our goal is
to minimize power of the interconnect subject to the RAT

constraint at the source nsrc.

Definition 1. The required arrival time (RAT) qn at node
n is defined as

qn = min
ns∀s

(qs
n − d(ns, n))

where d(ns, n) is the delay from the sink node ns to n.

Dual Vdd Buffer Insertion (DVB) Problem – Given
an interconnect fanout tree which consists of a source node
nsrc, sink nodes ns, Steiner nodes np, candidate buffer nodes
nb and the connection topology among them, the DVB Prob-
lem is to find a buffer placement, a buffer size assignment
and a Vdd level assignment solutions such that the RAT qsrc

n

at the source nsrc is met and the power consumed by the in-
terconnect tree is minimized, while slew rate at every input
of the buffers and the sinks ns are upper bounded by ŝ.

2.4 Dual Vdd Buffered Tree Construction
We measure the delay and power performance using the

same metric as in the DVB formulation. Assuming that
a floorplan of the layout is available, we can identify the
locations and shapes of rectangular blockages, which allows
wiring on top but forbid buffer insertion, and the locations
of the buffer station (BS) which are the allocated space for
buffer insertion. Therefore we have the following problem
formulation.

Dual Vdd Buffered Tree Construction (D-Tree) Prob-
lem – Given the locations of a source node nsrc, sink nodes
ns, blockages and BS, the D-Tree problem is to find the
minimum power embedded rectilinear spanning tree with

the buffer placement, the buffer sizes and the Vdd assign-
ment on the floorplan that satisfy the RAT qsrc

n constraint
at the source nsrc and the slew rate bound ŝ at every input
of the buffers and the sinks ns.

In the D-Tree problem, we have alternative tree topologies
as an extra dimension over the DVB problem for optimiza-
tion. Two D-Tree solutions are shown in Figure 2. The
large rectangle and the black dots are the blockage and the
BS respectively. Both cases achieve the same RAT at the
source nsrc. However, (a) has to go across a wide blockage
and therefore has to rely on running a long high Vdd net. An
alternative route is shown in Figure 2(b) in which it chooses
to go around the blockage so that it can insert more buffers
to achieve the same delay while keeping the long route at
low Vdd, which turns out to save power compared to (a).

E
sw

= 150fF

H

n
src

n
src

(a) (b)

E
sw

= 110fF

RAT = 800ps

RAT = 1000ps

L

L

H

RAT = 800ps

RAT = 1000ps

n
1

2 n2

n
1

n

L

H
RAT = 200ps

H

RAT = 200ps

Figure 2: Routing as a design freedom for power.

3. BUFFER INSERTION
Power-optimal solutions are constructed from partial so-

lutions from the subtrees. We call them as options, which
are defined below.

Definition 2. An option Φn at the node n refers to the
buffer placement, size and Vdd assignment for the subtree
Tn rooted at n. To perform delay and power optimization,
the option is represented as a 4-tuple (cn, pn, qn, θn), where
cn is the downstream capacitance at n, pn is the total power
of Tn, qn is the RAT at n and θn signifies whether there
exists any high Vdd buffer at the downstream. The option
with the smallest power psrc

n at the source node nsrc is the
power-optimal solution.

Our algorithm is based on [1] with a few improvements.
We add support for dual Vdd buffer insertion without level
converters. We also improve the runtime by introducing uni-
form sampling of the options under each capacitance value
to reduce the number of options generated with negligible
loss of optimality. To facilitate explanation, we define the
concept of option dominance here.

Definition 3. An option Φ1 = (c1, p1, q1, θ1) dominates
another option Φ2 = (c2, p2, q2, θ2) if c1 ≤ c2, p1 ≤ p2 and
q1 ≥ q2.

3.1 Baseline Algorithm
We enhance the dynamic programming framework in [1]

to accomodate the introduction of dual Vdd buffers, which
is summarized in Table 2. We use the same notation as
in Definition 2 to denote options Φ and their components.
Moreover, we use ck

b , Ek
b , V k

b and dk
b (cload) to denote the

input capacitance, the power, the Vdd level and the delay
with output load cload of the buffer bk. dn,v and En,v(V) are
the delay and the power of the interconnect between nodes
n and v operating at voltage V . The set of available buffers
Set(B) contains both low Vdd and high Vdd buffers. We first
call DP at the source node nsrc, which recursively visits
the children nodes and enumerates all possible options in a
bottom up manner until the entire interconnect tree T src

n is
traversed.

Algorithm: DP (Tn, Set(B))
0. Set(Φn) = (cs

n, 0, qs
n, false) if n is a sink

else (0, 0,∞, false)
1. for each child v of n

2. Set(Φv) = sampled DP (Tv)
3. Set(Φtemp) = Set(Φn)
4. Set(Φn) = ∅
5. for each Φi ∈ Set(Φv)
6. for each Φt ∈ Set(Φtemp)
7. for each buffer bk ∈ Set(B)

/* also contains the no buffer option φ */
8. if bk = φ

9. Vn = VH if θi or θt is true, else VL

10. Φnew = (ci + ct, pi + pt + En,v(Vn),
min(qt, qi − dn,v), θi or θt)

11. else if i. V k
b is high; or

ii. V k
b is low and θi is false

12. Φnew = (cb, pi + pt + En,v(V k
b) + Ek

b ,

min(qt, qi − dn,v − dk
b (ci + cn,v),

θt or (if V k
b = VH))

13. else goto line 7
14. if i. slew rate violation at downstream buffers; or

ii. Φnew dominated by any Φz ∈ Set(Φn)
15. drop Φnew

16. else

17. remove all Φz ∈ Set(Φn) dominated by Φnew

18. Set(Φn) = Set(Φn) ∪ {Φnew}
19. return Set(Φn)

Table 2: Dynamic programming for buffer insertion.

There are several new features in our algorithm in order
to support the insertion of dual Vdd buffers. Line 10 and 12
of Table 2 produce the new options Φnew for the cases of no
buffer insertion and inserting buffer bk respectively between
node n and v. In the case of no buffer insertion, we set V
to either VH for high Vdd or VL for low Vdd at line 9 accord-
ing to the downstream high Vdd buffer indicators θi, θj , and
line 10 makes use of V to update the power consumed by
the interconnect. Note that when θ = false (ie. there is
no high Vdd buffers in the downstream), only the low Vdd

option has to be created since the high Vdd counterpart is
always inferior. In the case of buffer insertion, we simply
add En,v(V k

b) according to the operational voltage of buffer
bk to pnew and update θ accordingly. Also note that we use
line 11 to guard against low Vdd buffers driving high Vdd

buffers to avoid the need of level converters, as explained in
Section 2.1.

3.2 Power-Delay Sampling
We apply the technique of sampling to the options to re-

duce the growth of options, which can go to the order of
billions for large nets if uncontrolled. The idea is to pick
only a certain number of options among all options for up-
stream propagation (line 2 of Table 2) in the algorithm DP .
Figure 3 shows (a) the pre-sample and (b) the after-sample
option sets under the same capacitance. Each black dot cor-
responds to an option. We divide each side of the bounding
box of all options into equal segments such that the entire

power-delay domain are superposed by a grid. For each grid
square in Figure 3(a), we retain only one option if there is
any. By also including the smallest power option and the
largest RAT option, we obtain the sampled non-dominated
option set in Figure 3(b).

Power

RAT

Power

RAT

(a) (b)

Figure 3: Sampling the non-dominated options.

Note that we do not sample on to capacitance values.
The capacitance value in an option is for the purpose of
accurate calculation of power and delay in the upstream
of the tree. Moreover, the number of capacitance values is
relatively small due to the upper bound slew rate constraint,
which means that sampling on capacitance value has little
effect anyway.

3.3 Experiment
We test our algorithm on 10 testcases s1 ∼ s10 gener-

ated by randomly placing source and sink pins in a 1cm x
1cm box. We use a rectilinear Steiner tree generation pack-
age [15] to generate the connection between the source and
the sink pins. We also break interconnect between nodes
longer than 500µm by inserting degree-2 nodes. In this
experiment we assume that every non-terminal nodes are
candidate buffer nodes. We set the RAT at all sinks to
0 so that the objective becomes minimizing the maximum
delay from the source to any sink. Table 1 lists all the tech-
nology related settings. The slew rate bound ŝ is set to
100ps. We have made buffers using an inverter cascaded
with another inverter which is four times larger. Buffer sizes
used in the experiment are 16x, 32x and 64x. We compare
three algorithms, which are i. power-optimal buffer inser-
tion (PB) algorithm [1] considering only single (high) Vdd

buffers; ii. SVB for our DVB algorithm considering only
high Vdd buffers; and iii. DVB for our DVB algorithm con-
sidering dual Vdd buffers. In both SVB and DVB we set the
sampling grid to 20 x 20.

DVB

SVB
PB

−2000

−1800

−1600

−1400

−1200

−1000

−800

 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

R
A

T
 (

ps
)

Energy per switch (fJ)

Figure 4: Non-dominated solutions of s4.

Figure 4 shows all non-dominated options at the source
node nsrc (i.e. valid solutions) of the testcase s4. We observe

that the sampling approximation introduced by our DVB

algorithm has almost no impact on the power-delay opti-
mality, as the options from SVB follow those from PB very
closely. We also see that introduction of dual Vdd buffers in
DVB significantly improves the power optimality by pushing
all option to the left of the graph.

Table 3 shows the experimental results for the three algo-
rithms that we consider. Since the power and delay values
are extremely similar between PB and SVB, we omit those
for PB to save space. RAT* is the maximum achievable
RAT at the source. The percentages in the brackets show
the relative change of power from SVB to those in DVB.
Runtime is measured on a Intel Xeon 1.9Ghz Linux work-
station with 2Gb of memory. We see that on average using
dual Vdd buffers reduces power by 23% compared to the case
when only high Vdd buffers are considered at RAT*. When
we relax the RAT at the source to 105% of RAT*, the dual
Vdd buffer solution saves 26% of power compared to the high
Vdd buffer-only solutions. Also notice that SVB is 17x faster
than PB on average.

4. BUFFERED TREE CONSTRUCTION
Using the sampling technique in Section 3.2, we attempt

to extend the algorithms in [6, 7] to handle dual Vdd buffered
tree construction with power minimization as the objective.
The D-Tree problem is an NP-Hard problem. In fact, in
the case of no BS and blockages, the D-Tree problem is es-
sentially the optimal rectilinear Steiner tree problem and
is known to be NP-Complete [16]. The artifact of the NP-
hardness is the exponential growth of the number of options,
which is complicated by considering power in addition to de-
lay. We find that if we sample options using a very sparse
grid (eg. 2 x 2 grid), we end up losing power optimality by
dropping too many options. However, a denser grid causes
catastrophic increase in runtime if we perform a linear scan
for pruning each time the algorithm creates a new option.
Therefore, solving the D-Tree problem requires a very effi-
cient way of managing options, which has not been consid-
ered in [6, 7].

The data structure in [1] which uses an augmented or-
thogonal search tree for option pruning is a good starting
point. The authors use a hash table labeled by power values
as a container for search trees of capacitance and delay. In
their algorithm they always add the options into the tree in
the order of increasing capacitance. When combined with
their dominance detection scheme, the algorithm adds only
non-dominated options into the tree.

However, we cannot directly apply the data structure and
operations described in [1] to solving the D-Tree problem.
In this problem the order of node traversal is not known as a
priori due to the combinatorial nature of the path searching
problem. Therefore we can no longer guarantee the order by
which options are added to the search tree. This may cause
dominated options residing in the search tree, which causes
the tree to take O((log m)2) time (where m is the number of
options in the tree) per addition of option to update if bal-
anced trees are used. Moreover, keeping redundant options
also worsens the space requirement. Therefore, we need a
way to efficiently prune options from the tree in order to
retain option non-redundancy.

4.1 Dynamic Pruning
We propose an improved data structure, as shown in Fig-

Testcase runtime (s) SVB DVB
net # # PB SVB DVB power @ power @ power @ power @

nodes sinks RAT* 105% RAT* [x] 105% RAT*
(s) (s) [x] (fJ) RAT* (fJ) (fJ) [%] (fJ) [%]

s1 86 19 3 2 [1.5] 6 4669 4127 3980 [-15%] 3277 [-21%]
s2 102 29 4 3 [1.3] 9 5476 4844 4785 [-13%] 3750 [-23%]
s3 142 49 17 7 [2.5] 20 8123 6316 6930 [-15%] 4804 [-24%]
s4 226 99 224 33 [6.8] 64 13232 9440 11322 [-14%] 7876 [-17%]
s5 375 199 719 86 [8.4] 212 18699 15275 13808 [-26%] 11376 [-26%]
s6 515 299 2121 139 [15] 371 23443 20117 17239 [-26%] 14703 [-27%]
s7 784 499 33419 393 [85] 635 33552 28336 23804 [-29%] 20221 [-29%]
s8 1054 699 - 598 1072 38351 33686 25799 [-33%] 22985 [-32%]
s9 1188 799 - 853 1859 40228 36358 26646 [-34%] 23045 [-37%]

[17] [-23%] [-26%]

Table 3: Experimental result of single and dual Vdd buffer insertion.

ure 5, similar to the one in [1] but also support solution
pruning from the search trees. We label the hash table using
capacitance instead of power and keep the power and RAT

portion of options in the tree instead. The slew rate upper
bound tends to tightly upper bound maximum value of ca-
pacitance and therefore the hash table tends to be smaller,
which results in less search trees.

c = 28

c = 25

c = 10 p = 100, q = 500

p = 150, q = 550

p = 120, q = 520

p = 180, q = 570

p = 200, q =600

p = 80, q = 400

p = 50, q = 210 p = 75, q = 390

p = 70, q = 380 p = 90, q = 450

...

Figure 5: Data structure for option pruning.

The search trees are ordered so that at each node the
power value is larger (smaller) than those in the nodes of
the left (right) subtree respectively. We always maintain
the tree so that no option dominates any other. Following
from this, we immediately see that all RAT q are in the same
order as power p, i.e. the q values in the left (right) subtree
of the node n are smaller than (larger) than the RAT q of
n. Therefore, we do not require explicit maintanance of the
largest RAT in the left subtree as in [1].

Our algorithm to prune dominated options from the tree is
summarized in Table 4. Set(Φn), which contains the options
at node n, are organized in the data structure mentioned
above. In the pseudo-code we treat any option Φcur as a
node in the search tree, and therefore Φcur → left refers to
the left child of the node storing the option Φcur. We use
TΦ to denote the subtree rooted at Φ. For each capacitance
value that is larger than that in the new option Φnew, line
2∼7 look for the first option Φcur in the tree that Φnew

domiantes. If one is found, line 8∼13 prune the left subtree
of Φnew with a single downward pass of the tree, which takes
only O(log m) time for m options in the tree, by making use
of the special tree ordering. The right subtree of Φcur is
also pruned in a similar fashion. Note that after this step,
options in the Set(Φjunk) can be removed and Φnew can
be inserted as usual in a balanced tree in O(log m) time.
Rotation, which helps balancing the tree, requires no label
updating as long as no option in the tree is dominated.

4.2 The D-Tree Algorithm
Table 5 summarizes the D-Tree algorithm. Each option

Algorithm CleanDominate(Φnew, Set(Φn))
0. Set(Φjunk) = ∅
1. for each distinct capacitance c > cnew in Set(Φn)
2. Φcur = option at the root of the search tree under c

3. while Φcur 6= φ

4. case 1: pnew < pcur , qnew < pcur,
Φcur = Φcur → left

5. case 2: pnew < pcur , qnew > qcur, goto line 2

6. case 3: pnew > pcur , qnew < qcur, goto line 9
7. case 4: pnew > pcur , qnew > qcur,

Φcur = Φcur → right

8. Set(Φjunk) = Set(Φjunk) ∪ {Φcur}
9. Φdom = Φcur → left

10. while Φdom 6= φ

11. case 1: pnew < pdom,

Set(Φjunk) = Set(Φjunk) ∪ {Φdom, TΦdom→right}
Φdom = Φdom → left

12. case 2: pnew > pdom,
Φdom = Φdom → right

13. repeat line 9∼12 with modifications:
i. exchange ‘left’ and ‘right’;

ii. replace pnew and pdom with qnew and qdom; and
iii. exchange ‘<’ and ‘>’

Table 4: Dynamic tree update.

now stores the “sink set” S and “reachability set” R to keep
track of the sinks and the other nodes that the current op-
tion covers. The algorithm starts by building a grid using
the “escape node algorithm” in [7]. Line 1∼4 create the
candidate buffer insertion nodes nk

b by looking for intersec-
tion points between BS and the grid lines (ni, nj). The core
process of creating new options Φnew considering dual Vdd

buffers is the same as that in the DVB algorithm (refer to
line 8-18 of Table 2) with additional book keeping to track
the routability. The new pruning data structure in Section
4.1 is applied at line 17 for pruning options from Set(Φj).

4.3 Experiment
We create 5 testcases g1∼g5 by randomly generating source

and sink pins in a 1cm x 1cm box. We also randomly gen-
erate blockages so that it consumes approximately 30% of
the total area of the box. Horizontal and vertical BS are
randomly scattered in the box so that the average distance
between two consecutive BS is about 1000µm. The scales
of these testcases as a result are similar to those in [6]. We
use 32x and 64x buffers. We set the RAT of all sinks to 0 so
that maximizing RAT at the source corresponds to minimiz-
ing the maximum delay from the source to any sink. The
slew rate bound ŝ is set to 100ps. We again refer to Table
1 for technology related settings. We compare three cases,

Algorithm DTREE(nsrc, Set(ns), Set(BS), Set(Blockage))
0. {Set(np), ℵ(Set(n))} = Grid(Set(n), Set(Blockage))
1. for each node ni ∈ Set(n)
2. for each neighbour node nj ∈ ℵ(ni)
3. Set(n) = Set(n)∪{np created by edge (ni, nj)∩Set(BS)}
4. ℵ(np) = {ni, nj}; update ℵ(ni),ℵ(nj)
5. Q(Φcur

n) = � ns∈Set(ns) Set(Φs
n)

6. while Q(Φcur
n) 6= ∅

7. Φcur
n = pop Q(Φcur

n)
8. for each neighbour nj ∈ ℵ(ncur)
9. for each option Φj

n ∈ sampled Set(Φj
n)

10. if (Φj
n.R) ∩ (Φcur

n .R) = ∅
11. (form Φnew similar to line 7∼14 in Table 2)

12. Φnew.R = (Φj
n.R) ∪ (Φnew.R)

13. Φnew.S = (Φj
n.S) ∪ (Φnew.S)

14. if i. slew rate violation at downstream buffers; or
ii. Φnew dominated by any

{Φj
n : (Φnew.S) ⊆ (Φj

n.S), Φj
n ∈ Set(Φj

n)}
15. drop Φnew

16. else

17. remove {Φj
n : (Φnew.S) ⊇ (Φj

n.S), Φj
n ∈ Set(Φj

n)}
dominated by Φnew

18. Set(Φj
n) = Set(Φj

n) ∪ {Φnew}
19. push Φnew into Q(Φcur) if nj 6= nsrc

Table 5: Dual Vdd buffered tree generation.

which are i. RMP in [6] for timing-aware buffered tree gen-
eration; ii. S-TREE for our D-Tree algorithm considering
single (high) Vdd buffers; and iii. D-TREE for D-Tree algo-
rithm considering dual Vdd buffers. Note that in the original
implementation of [6] only options with the smallest capac-
itance under each reachable set are kept, which the authors
claim has minimal impact on RAT optimality through ex-
periment. However, we have found that the validity of this
claim has strong correlation with the positions and density
of the buffer candidate nodes. Therefore we choose to ex-
clude this speed up heuristic to avoid losing optimal RAT.

Testcase RMP S-TREE D-TREE
power power power run-

node sink @ RAT* @ RAT* @ RAT* time
(pJ) (pJ) [%] (pJ) [%] (s)

97 2 1.6 1.6 [0%] 1.5 [-7%] 1
165 3 3.4 3.4 [0%] 3.2 [-4%] 35
137 4 3.9 3.5 [-10%] 2.9 [-23%] 66
261 5 4.9 4.4 [-13%] 3.1 [-37%] 937
235 6 4.2 3.8 [-10%] 3.4 [-18%] 1391

[-7%] [-18%]

Table 6: Experimental result of timing-aware and
dual Vdd low power buffered tree generation.

Table 6 shows the experimental results for the five test
cases. We compare the power consumption at the maximum
achievable RAT of each net. The percentages in the brackets
show the reductions of power from the RMP to the D-Tree

formulation with high and dual Vdd buffers respectively. We
observe a 7% reduction through power-minimization using
high Vdd buffers. Using dual Vdd buffers gives 18% of power
reduction over RMP. Note that power-optimal solution con-
sidering high Vdd alone may not yield a better power as
shown in the first two testcases, but the extra optimization
dimension provided by using dual Vdd always helps achieve
power savings.

5. CONCLUSION AND FUTURE WORK

This paper presents the first in-depth study on applying
dual Vdd buffers to buffer insertion and multi-sink buffered
tree construction for power minimization under delay con-
straint. We develop a sampling-based sub-solutions (i.e. op-
tions) propagation method and a balanced search tree based
data structure for option pruning to cope with the increased
complexity due to simultaneous delay and power consider-
ation and increased buffer choices. We obtain 17x speedup
with little loss of optimality compared to the exact option
propagation [1]. Extensive experimental results show that
when dual Vdd buffers are considered, our algorithm reduces
power by 23% at the minimum delay specification compared
to [1]. Moreover, compared to the delay-optimal tree using
single Vdd buffers [6, 7], our power-optimal buffered tree re-
duces power by 7% and 18% when single Vdd and dual Vdd

buffers are used respectively.
This work does not consider the issues regarding dual Vdd

power distribution network – we assume that all buffer sta-
tions support dual Vdd buffers, which is valid only if the de-
sign uses dual Vdd circuits extensively throughout the chip.
In a lot of multiple Vdd ASIC designs, designers assign volt-
ages to regions (Vdd bays). Co-optimization of dual Vdd

buffered routing and placement of these Vdd bays is an in-
teresting problem to pursue.

6. REFERENCES
[1] J. Lillis, C. Cheng, and T. Lin, “Optimal wire sizing and

buffer insertion for low power and a generalized delay
model,” in ICCAD, Nov. 1995.

[2] T. Okamoto and J. Cong, “Buffered Steiner tree
construction with wire sizing for interconnect layout
optimization,” in ICCAD, Nov. 1996.

[3] J. Lillis, C. Cheng, and T. Lin, “Simultaneous routing and
buffer insertion for high performance interconnect,” in
GLVLSI Symp., 1996.

[4] C. Alpert, G. Gandham, J. Hu, J. Neves, S. Quay, and
S. Sapatnekar, “Steiner tree optimization for buffers,
blockages and bays,” in ISCAS, May 2001.

[5] J. Hu, C. Alpert, S. Quay, and G. Gandham, “Buffer
insertion with adaptive blockage avoidance,” TCAD,
vol. 22, no. 4, pp. 492–498, 2003.

[6] J. Cong and X. Yuan, “Routing tree construction under
fixed buffer locations,” in DAC, Jun 2000.

[7] W. Chen, M. Pedram, and P. Buch, “Buffered routing tree
construction under buffer placement blockages,” in
ASP-DAC, Jan 2002.

[8] F. Li, Y. Lin, and L. He, “Vdd programmability to reduce
fpga interconnect power,” in ICCAD, Nov 2004.

[9] H. Bakoglu, Circuits, Interconnects and Packaging for
VLSI. Addison-Wesley, 1990.

[10] K. Banerjee and A. Mehrotra, “A power-optimal repeater
insertion methodology for global interconnects in
nanometer designs,” TCAD, vol. 49, no. 11, pp. 2001–2007,
2002.

[11] Semiconductor Industry Association, International
Technology Roadmap for Semiconductors, 2003.

[12] “Quickcap user manual,” in http://www.magma-da.com/.
[13] “Berkeley predictive technology model,” in

http://www-device.eecs.berkeley.edu/ ptm.
[14] C. Alpert, D. Devgan, and C. Kashyap, “RC delay metrics

for performance optimization,” TCAD, vol. 20, no. 5,
pp. 571–582, 2001.

[15] D. Warme, P. Winter, and M. Zachariasen, “Geosteiner,” in
http://www.diku.dk/geosteiner, 2003.

[16] W. Shi and C. Su, “The rectilinear steiner arborescence
problem is NP-complete,” in ACM-SIAM Symp. on
Discrete Algorithms, 2000.

