
Statistical Dual-Vdd Assignment for FPGA Interconnect
Power Reduction

Yan Lin and Lei He
Electrical Engineering Department

University of California, Los Angeles
{ylin, lhe}@ee.ucla.edu, http://eda.ee.ucla.edu

∗

ABSTRACT
Field programmable dual-Vdd interconnects are effective to
reduce FPGA power. However, the deterministic Vdd as-
signment leverages timing slack exhaustively and significantly
increases the number of near-critical paths, which results in
a degraded timing yield with process variation. In this pa-
per, we present two statistical Vdd assignment algorithms.
The first greedy algorithm is based on sensitivity while the
second one is based on timing slack budgeting. Both mini-
mize chip-level interconnect power without degrading timing
yield. Evaluated with MCNC circuits, the statistical algo-
rithms reduce interconnect power by 40% compared to the
single-Vdd FPGA with power gating. In contrast, the deter-
ministic algorithm reduces interconnect power by 51% but
degrades timing yield from 97.7% to 87.5%.

1. INTRODUCTION
Modern VLSI designs see a large impact from process vari-

ation as devices scale down to nanometer technologies. Sim-
ilar to ASICs, FPGAs are subject to variations in the opera-
tion of transistors comprising the logic functionality and the
switching muxes. Unique in FPGAs, the guard-banded tim-
ing model will be applied to designs unknown in advance,
and can be arbitrarily conservative or aggressive [1]. Sta-
tistical analysis on timing or power is necessary under the
presence of variations. [2] presents closed form formulae
for FPGA leakage yield, and performs architecture and de-
vice co-evaluation considering process variation. It has been
shown in [2] that the FPGA on-chip delay and leakage vari-
ations can be up to 1.9X and 3X, respectively. [1] develops
a stochastic placement leveraging statistical static timing
analysis (SSTA) for FPGA timing yield optimization with
process variation.

Meanwhile, field programmable dual-Vdd (VddP) tech-
niques have been used for FPGA interconnect power re-
duction [3]. A Vdd-level converter is needed when a low-
Vdd (VddL) interconnect switch drives a high-Vdd (VddH)
switch to avoid excessive leakage. It has been shown that the
fine-grained level converter insertion in interconnects con-
sumes large leakage [3]. [4] proposes a formulation in which
no VddL switch drives VddH switches within a routing tree
such that each tree may have two Vdd levels but without
level converter in interconnects. The proposed Vdd assign-
ment algorithm in [4] is based on timing slack budgeting

∗
This paper is partially supported by NSF grant CCR-0306682

and Actel under UC MICRO program. Address comments to
lhe@ee.ucla.edu.

with linear programming (LP) formulation for FPGAs with
uniform wire length, and is extended to mixed wire lengths
in [5]. [6] further re-formulates the LP formulation to a
min-cost network flow (netflow) formulation and achieves
an average of 8X overall speedup.

However, the deterministic Vdd assignment leverages tim-
ing slack on non-critical paths exhaustively for power reduc-
tion. Although the critical path delay does not increase, the
portion of near-critical paths increases significantly. With
process variation, any near-critical paths may become sta-
tistically timing critical. Therefore the increased number
of near-critical paths may result in a larger mean and vari-
ance of circuit delay, and a much degraded timing yield with
variation. As shown in Figure 1, the usage of programmable
Vdd increases the percentage of near-critical paths (with de-
lay larger than 90% critical path delay) from 0.26% to 4.7%,
which degrades the timing yield from 97.7% to 89.2%.

0%

5%

10%

15%

20%

25%

0% 10
%
20
%
30
%
40
%
50
%
60
%
70
%
80
%
90
%

(a) norm alized path length distribution

Sinlg-Vdd

VddP (EdTLC-NW)

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

(b) delay distribution (ns)

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n
(P

D
F)

Single−Vdd
VddP (EdTLC−NW)

yield loss

Figure 1: (a) Path-length distribution; (b) delay dis-
tribution with variation (circuit: s38417).

A similar issue has been addressed in statistical gate siz-
ing for ASICs [7]. [8] presents statistical gate sizing based on
iterative greedy algorithm with SSTA evaluated in each it-
eration. Other work studies non-linear programming based
gate sizing. [9] presents a robust LP formulation with tim-
ing yield estimated while this estimation may be highly pes-
simistic with local variation considered. [10] presents an it-
erative Lagrangian Relaxation (LR) based sizing algorithm.
However, the mean and nominal delay 1 are implicitly as-
sumed as the same which may result in an over-optimistic
timing yield estimation. There is no existing work in the
literature for statistical Vdd assignment for FPGAs. More-
over, the existing circuit tuning techniques in ASICs [8, 9,
10] cannot be directly applied to FPGAs due to the Vdd-
level constraint, i.e. no VddL switch should drive VddH
switches without level converter in interconnects.
1
The mean delay may be larger than the nominal one due to max

operation with variations [11].

978-3-9810801-2-4/DATE07 © 2007 EDAA

636

In this paper, we assume the same Vdd-programmable in-
terconnects as [5, 6] and study statistical Vdd assignment
for FPGA interconnect power reduction. Two statistical al-
gorithms are proposed. The first greedy algorithm is based
on sensitivity, namely, greedy-s . The second one is based
on timing slack budgeting with netflow formulation, namely
netflow-s . The budgeting stage in netflow-s is deterministic
and identical to that in EdTLC-NW [6] (called as netflow in
this paper). Different from [9, 10], our algorithm netflow-
s guarantees that the near-critical path number does not
increase to avoid timing yield degradation without a large
number of SSTAs. In addition, Vdd-level constraint is con-
sidered in both greedy-s and netflow-s . Compared to single-
Vdd FPGA with power-gating, the deterministic algorithm,
netflow , reduces interconnect power by 51.2% but degrades
timing yield from 97.7% to 87.5%. In constrast, greedy-s
and netflow-s reduce interconnect power by 40% and 39.5%
respectively but without degrading timing yield. Moreover,
netflow-s runs 3.6X faster than greedy-s .

The rest of the paper is organized as follows. Section 2
introduces modeling and problem formulation. Section 3
presents statistical Vdd assignment algorithms. Section 4
discusses the experimental results. We conclude the paper
in Section 5. Note that our technique to bound the number
of near-critical paths can be extended to circuit tuning with
a variety of design freedoms for ASICs.

2. PRELIMINARIES
2.1 Process Variation Model

Process variation can be classified as global, affecting all
aspects of a given chip, spatial/regional, affecting geographic
areas of the chip, or local, randomly affecting each individual
transistor. Delay and leakage of a circuit element (e.g., an
LUT or a routing switch) are random variables with process
variation.

The delay of a timing edge, d, is modeled as a normal
distributed (Gaussian) random variable and can be captured
by the following model in the first-order canonical form

d = d0 + a · pg + a · ps + a · pr, (1)

where d0 is the mean value of d, a is the delay sensitivity
to this variation source, and pg, ps and pr model the global,
spatial, and local variations, respectively. Leakage power
is exponentially affected by variation such as that in effec-
tive channel length. Same as [2], the leakage current of one
circuit element, i, is modeled as a lognormal variable as

i = i0 · es·pg+s·ps+s·pr (2)

where i0 is the nominal value of leakage current and s is the
leakage sensitivity to this variation source.

We assume that pg, ps and pr all follow a standard nor-
mal distribution N(0, 1). Moreover, pg, ps and pr are mutu-
ally independent, as their causing mechanisms are different
by definition. To model spatially correlated variation, an
FPGA chip is partitioned into m grids and perfect corre-
lation among the devices is assumed in the same grid. We
adopt the methods from [12] to generate the covariance ma-
trix and use principle component analysis (PCA) [13] to
transform a set of correlated random variables to an uncor-
related set. We use SPICE to extract delay and leakage vari-
ations for basic circuit elements under different Vdd-levels
in FPGA, considering process variation in effective channel

length Leff , threshold voltage Vth for delay and further gate
oxide thickness Tox for leakage [2].

2.2 Statistical Timing and Leakage Analysis
Statistical static timing analysis (SSTA) has recently been

proposed to analyze timing with process variation [14, 13].
The probabilistic equivalents of the “max”, “min”, “add”
and “subtract” operations are involved in SSTA. With the
delay in the canonical form, addition and subtraction are
performed easily [14]. The max or min of two Gaussians
is not a Gaussian, but is modeled as a Gaussian [11] and
then expressed in the canonical form, which allows us to
propagate the correlations due to global and spatial varia-
tions. With forward and backward traversals of the timing
graph, the distribution of the arrival and requested arrival
time for each node can be obtained. Given a cut-off delay
Tcut, the timing yield is defined as the probability that the
critical path delay is no longer than Tcut considering vari-
ation, and can be calculated using the cumulative density
function (CDF) of circuit delay.

Statistical leakage analysis has been presented in [15] for
ASICs and in [2] for FPGAs. We extend the method from [2]
to consider spatial variation for chip-level leakage analysis
under variation. The chip-level leakage power is the sum of
the leakage of each circuit element, where each is a lognormal
distributed random variable. This sum of the lognormals
is then modeled as another lognormal. The leakage yield
is defined as the probability that the chip-level leakage is
no larger than a given cut-off leakage, Pleak, considering
variation. By transforming the lognormal distributed chip-
level leakage into its corresponding normal random variable,
leakage yield can be analytically calculated given a specified
cut-off leakage Pleak.

2.3 Problem Formulation
In this paper, we assume the VddP interconnects identi-

cal to [5, 6]. A mix of Vdd-levels within one routing tree is
allowed while no VddL switch should drive VddH switches.
The deterministic Vdd assignment formulation in [5] lever-
ages timing slack exhaustively for power reduction. The
increased portion of near-critical paths results in a signifi-
cantly degraded timing yield with variation. The statistical
Vdd assignment problem is to assign Vdd level to intercon-
nect switches such that the power is minimized and timing
yield is not degraded compared to that using single-Vdd.

3. STATISTICAL VDD ASSIGNMENT
In this section, we present two statistical Vdd assignment

algorithms. The first greedy algorithm, greedy-s , is based
on sensitivity. The second algorithm, netflow-s , is based on
timing slack budgeting with network flow (netflow). greedy-s
and netflow-s are motivated by their deterministic counter-
parts, dTLC-S in [4] (called as greedy) and EdTLC-NW
in [6] (called as netflow), respectively. Both greedy-s and
netflow-s minimize power under timing yield constraint con-
sidering process variation. The details of these two algo-
rithms are presented below.

3.1 Sensitivity Based Algorithm greedy-s
We extend the deterministic Vdd assignment algorithm

greedy [4] to consider timing yield constraint under process
variation. greedy initializes VddH to all switches and itera-
tively assigns VddL to candidate switches in non-increasing

637

order of power sensitivity. The assignment is accepted if
timing constraint is not violated and vice versa. In either
case, this assigned switch will not be visited again. The
iteration terminates when there is no candidate switch. A
switch is a candidate switch if firstly it has not been visited,
and secondly it does not drive any switch or VddL has been
assigned to all of its fanout switches. Power sensitivity is
defined as the power reduction when VddL is assigned to a
switch with both dynamic and leakage power considered.

There are two main differences between greedy-s and greedy
. The first difference is that SSTA instead of STA is per-
formed to analyze delay distribution in each iteration in
greedy-s . The assignment is accepted if timing yield require-
ment is met and vice versa. Secondly, statistical criticality
is considered in sensitivity. For each switch u, the sensitiv-

ity sens(u) is calculated as ps(u)
scrit(u)

, where ps is the power

sensitivity and scrit is the statistical criticality. Statistical
criticality is the probability for a timing edge/node to be
statistically critical under variation [14]. Essentially, we try
to assign VddL first to the switch with larger power saving
but with a less probability to be timing critical.

Algorithm 1 greedy-s

1: ReverseTopologicSort(SW, &parent, &fo);
2: L← ∅;
3: for each u ∈ SW do
4: ps(u)← ∆Pu; flag(u)← false; vdd(u)← V ddH;
5: if fo(u) = ∅ then
6: L← L ∪ u;
7: SSTA();
{iterative assignment with SSTA}

8: while L �= ∅ do
9: v ← GetMaxSensSwitch(SW, ps, scrit);
10: L← L− {v}; flag(v) ← true; vdd(v)← V ddL;

{SSTA and update criticality}
11: SSTA();

12: Y ← CDF (
Tcut−Tµ

Tσ
);

{yield constraint violated}
13: if Y < Ytarget then
14: vdd(v)← V ddH;
15: while parent(v) �= ∅ do
16: v ← parent(v); flag(v) ← true; vdd(v) = V ddH;

{yield constraint not violated}
17: else if parent(v) �= ∅ ∧ flag(parent(v)) = false then
18: x← parent(u); f ← true;
19: for each c ∈ fo(u) do
20: if flag(c) = false||vdd(c) = V ddH then
21: f ← false; break;
22: if f = true then
23: L← L ∪ {x};

The greedy-s algorithm (shown in Algorithm 1) first sorts
all the switches in the reverse topological order (line 1).
parent and fo save the parent switch and fanout switch
set for each switch, respectively. Lines 2-6 initialize power
sensitivities ps, Vdd levels, and visit flags for all switches.
In addition, all leaf switches, i.e. a switch without fanout
switch, are put into candidate switch list L. Line 7 per-
forms an initial SSTA and calculates statistical criticality
for each switch. greedy-s enters a loop (lines 8-23) and ter-
minates the iteration after no candidate switch exists (line
8). Lines 9-10 remove the candidate switch with the largest
sensitivity from L and assign VddL to it. Lines 11-12 per-
form SSTA with statistical criticality updated and calculate
the current timing yield. The assignment is rejected and
VddH is assigned to all of its upper stream switches if yield
constraint is violated (lines 13-16). Otherwise, if its imme-
diate upper stream (parent) switch is a candidate switch, we

put this parent switch into list L (lines 17-23). It is clear
that the complexity of greedy-s is dominated by SSTA with
O(m · (|V | + |E|) complexity, where m is a constant and is
decided by the number of variation sources and the number
of grids in spatial variation model, |V | and |E| are the num-
ber of vertices and edges in the timing graph respectively.
greedy-s requires n+1 SSTA in the worst case and therefore
has the worst case complexity of O(n ·m ·(|V |+ |E|)), where
n is the number of switches.

3.2 Slack Budgeting Based Algorithm
netflow-s

greedy implicitly allocates timing slack first to intercon-
nect switches with higher power sensitivity to reduce more
power. On the other hand, netflow explicitly allocates tim-
ing slack to minimize power. There are three phases in
netflow-s (see Figure 2 (a)). Timing slack is first allocated to
each routing tree by re-formulating the linear programming
(LP) formulation [4, 5] as a network flow (netflow) prob-
lem to minimize chip-level nominal power without increas-
ing critical path delay. A bottom-up assignment algorithm is
then performed to achieve the optimal solution within each
tree given the allocated slack. Finally, a refinement step is
performed to leverage the surplus timing slack.

Motivated by netflow , we develop its statistical counter-
part, netflow-s , to consider timing yield constraint under
process variation. netflow-s has three steps in the similar
fashion (see Figure 2 (b)). The first step in netflow-s is
the same as that in netflow , i.e. deterministically allocat-
ing timing slack using netflow formulation. In the second
step, we perform an iterative robust bottom-up assignment
considering process variation. In each iteration, we adjust
the threshold of near-critical path delay and guarantee that
the number of near-critical paths with delay larger than this
threshold does not increase. Finally, a statistical refinement
step is performed to leverage the surplus timing slack. Be-
low, we only focus on the second and third steps but skip
the timing slack budgeting based on netflow formulation.
Interested readers can refer to [4, 5, 6] for more details on
the timing slack budgeting formulation.

NW based
slack budgeting

Yield
satisfied?

Bottom -up
assignm ent

Refinem ent

P&R netlist

Statistical tim ing
& power analysis

NW based
slack budgeting

Robust iterative
bottom -up assignm ent

Statistical
refinem ent

P&R netlist

Statistical tim ing
& power analysis

Adjust static
criticality

Adjust allocated
slack

Bottom -up
assignm ent

SSTA

Y

N

(a) (b)

Figure 2: (a) netflow (b) netflow-s .

Observed that the usage of VddP increases the number of
near-critical paths significantly and degrades timing yield,
we develop the iterative robust bottom-up assignment al-
gorithm with binary search on static criticality, crit, such
that the number of near-critical paths with delay larger than
crit · Tspec does not increase in each iteration. Given a path

638

P and critical path delay Tspec, static criticality, crit, is
defined as (Tspec − delay(P))/Tspec, where delay(P) and
Tspec − delay(P) are the delay and slack of P , respectively.
Given a timing edge or node, the static criticality and slack
are calculated based the the longest path passed through this
edge or node. Slack of each edge can be analyzed by STA,
i.e. the difference between the requested arrival time and the
arrival time. A range of 0 to 1 for crit covers all the solution
space for timing yield and power tradeoff. crit = 0 corre-
sponds to the VddH case, i.e. no path delay is increased. In
this case timing yield is maximized with no power reduction.
On the other hand, crit = 1 corresponds to the deterministic
VddP case, i.e. any near-critical path delay can be increased
as long as the critical path delay does not increase. In this
case, power reduction is maximized while timing yield may
be significantly degraded with process variation.

To guarantee that the number of near-critical paths with
delay larger than crit · Tspec does not increase with VddP,
the allocated slack for each edge is adjusted as follows,

adjusted slack =

8>>><
>>>:

I : 0, (if slack vddh < (1− crit) · Tspec)
II : allocated slack,
(else if slack vddp ≥ (1− crit) · Tspec)

III : scale · allocated slack,

scale =
slack vddh−(1−c)·Tspec
slack vddh−slack vddp ,

(in other cases)

(3)

where slack vddh is the VddH slack, i.e. when the whole
circuit is using VddH, slack vddp is the VddP slack , i.e.
when all the allocated slacks are consumed. allocated slack
and adjusted slack are the allocated and adjusted slack, re-
spectively. Note that the slack and allocated slack of an
edge are two different concepts. Given a Tspec, STA can be
performed to analyze slack, slack vddh, for each edge under
VddH. After timing slack budgeting, the delay of each edge
can be increased by allocated slack but without increasing
the critical path delay Tspec. With the delay of each edge in-
creased by allocated slack, STA can be performed again to
analyze slack, slack vddp, for each edge under VddP. If the
longest path through an edge under VddH has delay larger
than (1− crit) · Tspec, i.e. the first case in (3), the allocated
slack is set to 0 without further increasing the near-critical
path delay. In the second case in (3), the longest path de-
lay through an edge under VddP has delay smaller than
(1 − crit) · Tspec, i.e. this longest path is not near-critical
even using VddP. In this case, the allocated slack remains
the same. In the third case in (3), where the longest path
through the edge is not near critical under VddH but be-
comes near critical under VddP, the allocated slack of each
edge along this path is scaled with a factor such that this
path becomes non-near critical. The scaling factor for each
edge is,

scale =
slack vddh− (1− c) · Tspec

slack vddh− slack vddp
(4)

Figure 3 shows an example for adjusting slack. For the pur-
pose of simplicity, we assume no branch for the path shown
in this figure. The path consists of three edges with 2ns
delay for each edge. The critical path delay Tspec is 10ns
resulting in a vddh slack of 4ns, which is the same for three
edges in this example2. After slack budgeting, each edge
is allocated with a slack of 1ns resulting in a vddp slack of
1ns. This path then becomes a near-critical path with delay
of 0.9Tspec. Suppose that we set crit to 0.8, i.e. the number

2
The slack for each edge along a path with branches may be different.

of near-critical paths with delay larger than 0.8Tspec should
not increase. The allocated slack for each edge is then scaled
by a factor of (4ns−(1−0.8)∗10ns)/(4ns−1ns) = 2/3. Af-
ter scaling, the vddp slack becomes 2ns and the path delay
becomes no greater than the threshold crit · Tspec.

2/3ns

Tspec = 10ns

2ns 2ns 2ns

2ns 2ns 2ns

vddh_slack = 4ns

1ns 1ns 1ns vddp_slack = 1ns

2ns 2ns 2ns

2/3ns 2/3ns

vddp_slack = 2ns

(a)

(b)

(c)

allocated_slack adjusted_slack

Figure 3: (a) Original path (b) Path with allocated
slack (c) Path with adjusted slack.

Theorem 1. Given a static criticality crit, (3) guaran-
tees that the number of near-critical paths with delay larger
than crit · Tspec does not increase.

Sketch of proof: The proof is straight-forward for near-
critical paths under VddH or non-near critical paths under
VddP. For near-critical paths due to VddP, the proposal
can be proved by induction. It has been shown that this
proposal stands for a path without branches. If a branch is
added, vddh slack and vddp slack either remain the same
or decrease for each edge in the path. It can be verified that
(4) must decrease or remain the same. Therefore, the path
delay under VddP must not increase with branches added.
This proof can be applied to any path in the circuit. �

Theorem 2. Given a static criticality, crit, (4) is the
maximum scaling factor to prevent the increase of near-
critical path number with delay larger than crit · Tspec.

Sketch of proof: For the example in Figure 3 and a crit
of 0.8, any scaling factor larger than 2/3 may result in a
near-critical path with delay larger than 8ns. �

Algorithm 2 IterativeRobustBottomUpAssign

1: STA();
2: Y ← 0; cu ← 1; cl ← 0; c← 0.9;
{adjust allocated slack}

3: while Y < Ytarget ||cu − cl > δ do
4: for each e(i, j) ∈ routing edges do
5: if slack vddh(i, j) < (1− c) · Tspec then
6: adjusted slack(i, j) ← 0;
7: else if slack vddp(i, j) < (1 − c) · Tspec then

8: scale← slack vddh(i,j)−(1−c)·Tspec
slack vddh(i,j)−slack vddp(i,j) ;

9: adjusted slack(i, j) ← allocated slack(i, j) · scale;
{perform bottom up assignment for each net}

10: for each routing tree i do
11: BottomUpAssign(adjusted slack(i), i);

12: SSTA();Y ← CDF (
Tcut−Tµ

Tσ
);

{adjust static criticality factor}
13: if Y > Ytarget then

14: cl ← c; c← cl+cu
2 ;

15: else
16: cu ← c; c← cl+cu

2 ;

We present the iterative robust bottom-up assignment in
Algorithm 2. Line 1 performs STA and calculates slack vddh

639

and slack vddp for each edge. Line 2 initializes static criti-
cality to 0.9, and its upper and lower bound to 1.0 and 0.0,
respectively. Line 3 enters a loop (lines 3-16) and termi-
nates iteration when the current timing yield is larger than
the target timing yield and the difference between the lower
and upper bounds of crit is small enough. Lines 4-9 ad-
just allocated slack for each edge based on crit. Lines 10-11
perform deterministic bottom-up assignment for each rout-
ing tree given the adjusted slack. This step is the same as
the bottom-up assignment in netflow , where VddL is it-
eratively assigned to all switches in one routing tree in a
bottom-up fashion. The iteration in the bottom-up assign-
ment terminates when no more switch in this tree can be
applied with VddL. Line 12 performs SSTA and analyzes
timing yield. Lines 13-16 adjust crit and its lower and up-
per bounds based on the current timing yield. Note that
this iterative adjustment on crit is a heuristic and conserva-
tive approach, which trades power reduction with runtime
(the number of SSTAs) compared to greedy -s (as shown in
Section 4).

After the iterative robust bottom-up assignment, we may
further reduce power by leveraging the surplus slack. To
leverage the surplus slack, we mark all the VddH switches
as ‘untried’ (flag ← false) but keep the VddL switches as
‘tried’(flag ← true), and then perform greedy-s algorithm
(see Algorithm 1) to achieve more VddL switches and fur-
ther reduce power but without degrading timing yield.

Solving the netflow based timing slack budgeting formula-
tion has the worst case complexity of O(|V |2 ·|E|·log(|V |·K),
where K is a constant. However, it has been shown in [6]
that the netflow based budgeting runs 50X faster than the
LP based budgeting in practice and the speedup is larger
for larger circuits. For the robust iterative bottom-up as-
signment, the complexity is O(H ·m · (|V |+ |E|)), where H
is the number of iterations and m · (|V | + |E|) is the SSTA
complexity. For the statistical refinement, the complexity is
O(η · n ·m · (|V | + |E|)), where ηn is the number of VddH
switches after the iterative robust bottom-up assignment.
The overall runtime of netflow-s is dominated by the statis-
tical refinement step and netflow-s runs 3.6X times faster
than greedy-s (as shown in Section 4).

4. EXPERIMENTAL RESULTS
In this section, we conduct the experiments on the largest

MCNC designs [16]. We use the Berkeley predictive de-
vice model [17] at ITRS [18] 65nm technology node with
VddH 1.0v and VddL 0.7v. The VPR FPGA toolset [19]
implements an island style FPGA architecture resembling
Altera’s Stratix device [20] with 10 4-LUT clusters, and 60%
length-4 and 40% length-8 wires. 1.2X of minimum routing
channel width is used for each design. VddH is applied to
all logic blocks. The nominal power is calculated using the
power model in [21]. Single-Vdd with power gating is used as
the baseline for power comparison. We implement an SSTA
based on [14] for timing yield analysis. To model spatial cor-
relation, each FPGA chip is partitioned into grids such that
each grid contains five tiles in one dimension (around 0.5mm
in 65nm technology). The correlation covariance coefficient
decreases to 0.1 at 2mm distance. We assume a variation in
each of Leff , Vth and Tox of 10%, 10% and 6% at 3σ (i.e.
a 99.7% chance that variation is within +/- 10% or 6% de-
viated from the nominal value) for global, spatial and local
variations, respectively. Tµ+2Tσ under single-Vdd is used as

the cut-off delay (i.e. 97.7% yield with single-Vdd) for tim-
ing yield analysis. 1.2X of leakage power using single-Vdd
is used as the cut-off leakage for leakage yield analysis.

Table 1 compares the timing yield between single-Vdd,
netflow , greedy-s and netflow-s . The mean, Tµ, and stan-
dard deviation, Tσ, of circuit delay in netflow are presented
in the difference compared to their counterparts in single-
Vdd, respectively. The deterministic assignment netflow
uses the critical path delay in single-Vdd as the timing con-
straint, i.e. the critical path delay does not increase after
assignment. However, netflow increases Tµ and Tσ by 8.8%
and 14.8% respectively due to the significantly increased
number of near-critical paths with VddP. The average tim-
ing yield, YT , in netflow therefore degrades from 97.7% to
87.5%. In contrast, the statistical assignment algorithms do
not increase Tµ and Tσ, and maintain the timing yield.

Single-Vdd (ns) netflow [6] greedy-s /netflow-s
circuit Tµ Tσ Tµ Tσ YT YT
alu4 19.44 2.86 11.6% 19.7% 84.4% 97.7% / 97.7%

apex2 22.62 3.24 10.5% 15.9% 86.2% 97.6% / 97.6%
apex4 19.33 2.52 9.2% 23.0% 85.4% 97.7% / 97.7%
bigkey 11.15 1.28 13.9% 26.5% 73.4% 97.6% / 97.6%
clma 39.56 5.21 11.0% 23.1% 82.8% 97.8% / 97.7%
des 22.02 3.12 14.4% 24.9% 78.4% 97.8% / 97.8%

diffeq 26.16 5.04 4.4% 0.1% 96.7% 97.7% / 97.7%
dsip 10.36 1.41 8.2% 15.0% 88.8% 97.6% / 97.6%

elliptic 30.55 5.08 5.4% 4.9% 94.5% 97.8 % /97.7%
ex1010 26.8 3.21 11.2% 29.1% 79.6% 97.7% / 97.7%
ex5p 20.03 2.67 8.3% 17.9% 87.8% 97.8% / 97.8%
frisc 41.78 7.54 3.9% 0.2% 96.3% 97.7% / 97.7%

misex3 18.58 2.48 9.3% 19.3% 86.3% 97.7% / 97.7%
pdc 27.91 3.54 10.7% 22.4% 82.7% 97.8% / 97.8%
s298 38.69 5.9 6.2% 10.5% 92.5% 97.8% / 97.7%

s38417 30.13 4.16 8.5% 11.6% 89.2% 97.7% / 97.7%
s38584 20.93 4.04 8.9% 0.2% 93.9% 97.8% / 97.7%

seq 18.3 2.51 9.8% 14.1% 87.0% 97.8% / 97.8%
spla 25.08 3.11 7.7% 19.6% 87.6% 97.7% / 97.7%
tseng 23.7 4.21 2.1% 3.0% 96.6% 97.7% / 97.7%
avg. - - 8.8% 14.8% 87.5% 97.7% / 97.7%

Table 1: Timing yield comparison between single-
Vdd, netflow , greedy-s and netflow-s .

We then compare interconnect power, leakage yield and
VddL switch number between single-Vdd, netflow , greedy-s
and netflow-s in Table 2. Columns 2-3 present the intercon-
nect power and leakage yield using single-Vdd. When using
1.2X leakage power as the cut-off leakage, the average leak-
age yield is 60%. Columns 4, 7 and 10 present the VddL
switch number (in the percentage of total switch number)
achieved by the three assignment algorithms. On average,
netflow , greedy-s and netflow-s achieve 95.6%, 75.7% and
75.7% VddL switches, respectively. Columns 5, 8 and 11
present the interconnect power reduction achieved by the
three algorithms. On average, netflow , greedy-s and netflow-
s reduce interconnect power by 51.2%, 40% and 39.5%, re-
spectively. We also present the leakage yield achieved by
the three algorithms in columns 6, 9 and 12. With the
same cut-off leakage, netflow , greedy-s and netflow-s have
an average leakage yield of 95.7%, 88.6% and 88.5%, re-
spectively. Compared to netflow , the statistical algorithms
achieve slightly less power reduction but without degrading
timing yield with variation. The two statistical algorithms,
greedy-s and netflow-s , achieve similar power reduction. In
addition, we present the VddL switch number and power re-
duction due to statistical refinement for netflow-s in columns
10 and 11. The statistical refinement achieves 25.7% (out of
75.7%) VddL switches and 12.3% (out of 39.5%) intercon-
nect power reduction. The statistical refinement is effective
in power reduction due to the surplus timing slack. Since we
scale the allocated slack conservatively without increasing
any near-critical path delay, some near-critical paths may

640

1 2 3 4 5 6 7 8 9 10 11 12
Single-Vdd netflow [6] greedy-s netflow-s (due to refine)

circuit power (w) YP VddL # (%) power YP VddL # (%) power YP VddL # (%) power YP
alu4 0.0121 59.9% 97.4% -51.0% 96.1% 58.5% -25.3% 81.0% 58.5% (43.7%) -23.5% (-17.3%) 81.7%

apex2 0.0180 59.8% 97.7% -51.4% 96.0% 67.4% -33.3% 85.3% 67.4% (56.6%) -33.7% (-27.8%) 85.5%
apex4 0.0086 59.8% 87.3% -47.5% 93.6% 42.7% -26.1% 75.1% 42.7% (37.2%) -24.9% (-19.0%) 74.9%
bigkey 0.0182 60.3% 95.1% -48.1% 95.8% 68.5% -31.1% 86.9% 68.5% (41.9%) -31.4% (-21.4%) 86.5%
clma 0.0392 60.0% 97.7% -53.1% 96.2% 82.6% -48.3% 91.8% 82.6% (12.9%) -48.1% (-8.8%) 91.6%
des 0.0203 60.2% 97.0% -50.5% 96.1% 75.7% -38.6% 90.4% 75.7% (62.9%) -38.3% (-31.6%) 90.4%

diffeq 0.0023 59.8% 99.1% -54.8% 96.5% 97.4% -54.6% 96.3% 97.4% (0.7%) -54.7% (-0.2%) 96.2%
dsip 0.0203 60.5% 94.8% -46.8% 95.8% 78.9% -36.7% 91.7% 78.9% (15.6%) -36.8% (-7.0%) 91.5%

elliptic 0.0059 59.9% 99.2% -55.0% 96.5% 96.7% -54.3% 95.9% 96.7% (10.2%) -54.3% (-3.0%) 95.9%
ex1010 0.0116 59.9% 93.6% -51.6% 95.2% 59.1% -28.4% 81.5% 59.1% (23.6%) -27.3% (-10.0%) 80.8%
ex5p 0.0054 59.9% 90.2% -48.5% 94.7% 60.1% -32.0% 84.1% 60.1% (19.7%) -33.3% (-11.9%) 83.0%
frisc 0.0058 60.1% 99.7% -57.8% 96.6% 98.9% -57.4% 96.5% 98.9% (2.4%) -57.0% (-0.5%) 96.5%

misex3 0.0128 59.9% 89.4% -46.4% 94.1% 53.3% -22.5% 93.5% 53.3% (35.8%) -22.9% (-14.8%) 79.4%
pdc 0.0225 59.9% 96.3% -52.1% 95.9% 73.6% -38.5% 79.5% 73.6% (35.0%) -32.0% (-11.5%) 87.4%
s298 0.0038 59.8% 96.6% -52.8% 96.0% 87.4% -50.6% 86.3% 87.4% (23.7%) -50.7% (-16.0%) 93.2%

s38417 0.0186 59.9% 97.9% -51.8% 96.2% 89.9% -46.3% 94.6% 89.9% (4.8%) -46.8% (-4.4%) 94.3%
s38584 0.0202 59.9% 99.4% -52.5% 96.5% 97.9% -52.8% 96.4% 97.9% (0.1%) -52.3% (-0.6%) 96.3%

seq 0.0178 59.9% 93.6% -49.2% 95.2% 63.0% -32.1% 83.7% 63.0% (29.0%) -31.6% (-13.7%) 83.6%
spla 0.0178 59.9% 91.1% -49.1% 94.6% 65.4% -36.7% 84.9% 65.4% (54.4%) -36.2% (-26.8%) 84.9%
tseng 0.0023 59.8% 98.5% -53.6% 96.4% 97.4% -53.4% 96.1% 97.4% (3.4%) -53.4% (-0.7%) 96.1%
avg. - 60.0% 95.6% -51.2% 95.7% 75.7% -40.0% 88.6% 75.7% (25.7%) -39.5% (-12.3%) 88.5%

Table 2: Comparison of interconnect power, leakage yield, and VddL switch number between single-Vdd,
netflow , greedy-s and netflow-s .

be slightly increased under timing yield constraint which
results in the surplus slack. This conservative adjustment
trades power reduction with runtime.

circuit netflow greedy-s netflow-s (refine)
alu4 43.9 422.3 230.0 (96.0%)
clma 7026.6 166397.7 41725.6 (99.0%)
des 114.3 1513.9 846.9 (98.3%)

elliptic 354.6 7496.5 753.0 (95.1%)
ex1010 675.7 7972.0 5838.5 (99.0%)
frisc 611.0 14228.4 668.8 (85.5%)
pdc 1332.6 14609.8 10133.3 (99.2%)
s298 127.7 913.1 336.3 (88.7%)

s38417 1199.9 31795.9 4157.6 (97.6%)
s38584 350.0 18298.6 396.4 (83.4%)

geomean 167.7 (1x) 13.8x 3.9x (92.3%)

Table 3: Runtime (s) comparison between netflow ,
greedy-s and netflow-s . Geometric mean is based on
20 MCNC designs.

Table 3 compares the runtime between netflow , greedy-s
and netflow-s . Compared to the deterministic algorithm
netflow , greedy-s and netflow-s take 13.8X and 3.9X run-
time respectively on average. netflow-s runs 3.6X faster
than greedy-s due to the fact that netflow-s first allocates
slack for each routing trees. We also show that the statis-
tical refinement consumes the majority (92.3% on average)
of the overall netflow-s runtime. This is due to the surplus
slack after iterative bottom-up assignment and the quadratic
complexity of statistical refinement.

5. CONCLUSIONS
To reduce power for dual-Vdd FPGAs with process vari-

ation, we have presented two statistical Vdd assignment al-
gorithms. The sensitivity based greedy algorithm, greedy-s ,
iteratively assigns VddL to interconnect switches with tim-
ing yield evaluated by SSTA in each iteration. The slack
budgeting one, netflow-s , first allocates timing slack to
each routing tree based on network flow formulation, then
performs iterative robust bottom-up assignment without in-
creasing the number of near-critical paths, and finishes with
a statistical refinement step. Both minimize chip-level in-
terconnect power without degrading timing yield. Evaluated
with MCNC circuits, greedy-s and netflow-s reduce intercon-
nect power by 40% and 39.5% respectively compared to the
single-Vdd FPGA with power gating. In contrast, the de-
terministic algorithm, netflow , reduces interconnect power

by 51.2% but degrades timing yield from 97.7% to 87.5%.
Moreover, netflow-s runs 3.6X times faster than greedy-s due
to the slack budgeting essence.

6. REFERENCES
[1] Y. Lin, M. Hutton, and L. He, “Placement and timing for

FPGAs considering variations,” in FPL, 2006.

[2] H.-Y. Wong and et al, “FPGA device and architecture
evaluation considering process variations,” in ICCAD, 2005.

[3] F. Li and Y. Lin and L. He, “Vdd programmability to reduce
FPGA interconnect power,” in ICCAD, Nov 2004.

[4] Y. Lin and L. He, “Leakage efficient chip-level dual-vdd
assignment with time slack allocation for FPGA power
reduction,” in Proc. Design Automation Conf., June 2005.

[5] Y. Hu, Y. Lin, L. He, and T. Tuan, “Simultaneous time slack
budgeting and retiming for dual-vdd FPGA power reduction,”
in Proc. Design Automation Conf., July 2006.

[6] Y. Lin, Y. Hu, L. He and V. Raghunat, “An efficient chip-level
time slack allocation algorithm for dual-vdd FPGA power
reduction,” in ISLPED, Oct. 2006.

[7] X. Bai and et al, “uncertainty-aware circuit tuning,” in DAC,
June 2002.

[8] M. R. Guthaus and et al, “Gate sizing using incremental
parameterized statistical timing analysis,” in ICCAD, 2005.

[9] M. Mani, A. Devgan, and M. Orshansky, “an efficient algorithm
for statistical minimization of total power under timing yield
constraints,” in Proc. Design Automation Conf., June 2005.

[10] S. Choi, B. Paul, and K. Roy, “Novel sizing algorithm for yield
improvement under process variation in nanometer technology,”
in DAC, June 2005.

[11] C. Clark, “The greatest of a finite set of random variables,” in
Operations Research, pp. 85 – 91, 1961.

[12] J. Xiong, V. Zolotov, and L. He, “Robust extraction of spatial
correlation,” in Proc. Intl. Symp. Physical Design, April 2006.

[13] H. Chang and S. S. Sapatnekar, “Statistical timing analysis
considering spatial correlations using a single PERT-like
traversal,” in ICCAD, Nov. 2003.

[14] C. Visweswariah and et al, “First-order incremental
block-based statistical timing analysis,” in DAC, June 2004.

[15] R. Rao and et al, “Parametric yield estimation considering
leakage variability,” in DAC, June 2004.

[16] S. Yang, “Logic synthesis and optimization benchmarks,
version 3.0,” tech. rep., Microelectronics Center of North
Carolina (MCNC), 1991.

[17] U. of Berkeley Device Group, “Predictive technology model,” in
http://www.device.eecs.berkeley.edu/ ptm/mosfet.html, 2002.

[18] International Technology Roadmap for Semiconductor in
http://public.itrs.net/, 2003.

[19] V. Betz and et al, Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, Feb 1999.

[20] Altera Corp., “Stratix device family data sheet,” Aug 2002.

[21] Y. Lin, F. Li, and L. He, “Power modeling and architecture
evaluation for FPGA with novel circuits for vdd
programmability,” in ISFPGA, Feb 2005.

641

