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Abstract—Low precision quantization in convolutional neu-
ral network (CNN) inference has been proved effective for
reducing computation complexity and bandwidth requirement.
Mixed precision CNNs manage to benefit from low precision
while maintaining accuracy. In this paper, we propose a Mixed
Precision FPGA-based Overlay Processor (MP-OPU) to fully
leverage the advantages of mixed precision for both conven-
tional and lightweight CNNs. The micro-architecture of MP-
OPU considers sharing of computation core with mixed precision
weights and activations to improve computation efficiency. In
addition, run-time scheduling of external memory access and data
arrangement are optimized to further leverage the advantages of
mixed precision data representation. Our experimental results
show that MP-OPU reaches 4.92 TOPS peak throughput when
implemented on the Xilinx VC709 FPGA (with all DSPs config-
ured to support 2-bit multipliers). Moreover, MP-OPU achieves
12.9× latency reduction and 2.2× better throughput/DSP for
conventional CNNs while 7.6× latency reduction and 2.9× better
throughput/DSP for lightweight CNNs, all on average compared
with existing FPGA accelerators/processors, respectively. To the
best of our knowledge, this is the first in-depth study on mixed
precision FPGA-based overlay processor for both conventional
and lightweight CNNs.

Index Terms—Mixed precision, CNN, FPGA, Hardware Accel-
eration

I. INTRODUCTION

Recent deep convolutional neural networks (CNNs) are
widely used in real-time applications, such as autonomous
driving, where model size and inference latency are the main
constraints. Many researchers have introduced low-precision
quantization techniques to reduce the model size, computation
complexity and communication bandwidth so that the infer-
ence latency is reduced [1].

However, conventional quantization approaches take the
same bit width of weights and activations for all layers,
and 8-bit fixed point has been proved effective in hardware
implementation while maintaining accuracy [2], [3]. Lower
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precision networks are also possible to achieve high accu-
racy, but require expert design and re-training [4]. To this
end, mixed precision comes to be a significant solution that
assigns different precision for different layers and different
networks [5]. However, the variety of the precision of each
layer makes the architecture design more challenging.

Trying to overcome the challenge, Nvidia releases Turing
GPU architecture which supports mixed precision arithmetic
operations (1-bit, 4-bit, 8-bit and 16-bit) [6]. BitFusion [7] is
another accelerator which can support multiplication on 2, 4, 8
and 16 bits. However, these architectures cannot fully leverage
the advantages of the quantized model. For example, when the
network is quantized to be 6-bit, the model has to be modified
to 4-bit or to 8-bit when mapped on these architectures, which
either leads to accuracy reduction or latency increment. On
the other hand, bit-serial multipliers, which can support more
flexible mixed precision multiplications, are used in Bismo [8].
However, Bismo uses large amount of look-up-tables (LUTs)
and Block RAMs (BRAMs) to implement matrix multiplica-
tion on the FPGA, which makes it difficult to support CNNs.

To this end, we propose the Mixed Precision FPGA-based
Overlay Processor (called MP-OPU) that effectively accel-
erates the inference of mixed precision models. By using the
similar instructions and compilation flow as Light-OPU [9], we
redesign the computation core and memory system to expand
the support from 8-bit fixed point CNNs to 2-bit to 8-bit mixed
precision CNNs. More specifically, the computation core can
be configured to operate with different number of multipliers
according to the given bit width of activations and weights,
while the memory system in ping-pong architecture is capable
of run-time data rearrangement to fully utilize the bandwidth
of external memory.

The main contributions of the proposed MP-OPU can be
summarized as follows:

• High Flexibility. Different from the previous work that
only support a subset of the the possible precision



choices [10], our MP-OPU manages to address mixed
precision CNNs varying from 2-bit to 8-bit. In our design,
the computation core is developed to be programmable
during run-time to support mixed precision efficiently.
By setting different parameter registers in the instruc-
tions, MP-OPU can support mixed precision without re-
implementing the design. Moreover, the memory system
is designed with run-time data pre-fetch and placement
modules to optimize the external memory access for
mixed precision.

• High Scalability. Our implementation is highly scalable
as it can be easily scaled up or down to different FPGAs
by adding or removing PEs. We only implement batch
parallelism among different PEs so that the PEs are
separate to each other and can be simply added or
removed.

• High Performance. With all the DSPs configured to
support 2-bit multiplication, MP-OPU can reach 4.92
TOPS peak throughput on Xilinx VC709 evaluation
board. Furthermore, we take conventional and lightweight
CNNs as benchmarks to be tested on MP-OPU. All
these networks are accelerated and MP-OPU achieves
12.9× latency reduction and 2.2× better throughput/DSP
for conventional CNNs, while 7.6× latency reduction
and 2.9× better throughput/DSP for lightweight CNNs
on average compared with existing FPGA accelerators,
respectively.

II. BACKGROUND AND RELATED WORK

A. Low Precision Quantization

Extensive explorations have been made on compressing
and accelerating neural networks by using quantization. Deep
compression methods [1] quantize the network weights to
reduce the model size by rule-based strategies. More aggres-
sive quantization strategies use 1-bit or 2-bit to represent the
weights [11]. Neural architecture search (NAS) based mixed
precision quantization is also proposed to improve the perfor-
mance and efficiency of quantizing a network. FBNet [12]
builds a lookup table of latency for different operations
running on the hardware, and optimizes the latency during
the design process. HAQ [5] computes the hardware feedback
directly from two customized accelerators and optimizes the
quantization policy until the resource constraints (e.g., latency,
energy) are met. All these studies manage to quantize the
full precision network (32-bit) into low precision (less than
or equal to 8-bit) with negligible accuracy loss. Therefore,
we utilize the quantization results from these methods and
the quantization approach is not included in the scope of this
work.

B. Fixed Precision Processors/Accelerators

Customized processors/accelerators on FPGA are proposed
to accelerate the inference of the quantized networks. OPU [2]
accelerate 8-bit fixed point CNNs, while the work in [3]
addresses 8-bit floating point CNNs. Light-OPU [9] expands
the work from conventional CNNs to light-weighted CNNs
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Fig. 1: The micro-architecture of MP-OPU. The computation
core has multiple PEs for convolutional layers followed by a
post process module for other types of layers. The memory
system is designed with on-chip buffers in ping-pong manner
to save communication time with the external memory.

with 8-bit fixed point as well. Different from these studies,
our work focuses on mixed precision CNNs.

C. Mixed Precision Processors/Accelerators

Mixed precision processors/accelerators on FPGA have
also been also proposed recently. Power-of-2 and fixed point
data are supported by the auto-generated accelerators on
FPGA [13]. The approach in [10] keeps the activations to
be 8-bit fixed point while the weights vary from 1 to 16-
bit. However, they only support a limited part of the bit
width combinations, while MP-OPU is optimized for all the
combinations of low precision (2 to 8 bits).

III. MICRO-ARCHITECTURE OF MP-OPU
The micro-architecture of MP-OPU discussed in this sec-

tion is shown in Fig. 1, consisting of Computation Core and
Memory System. In the Computation Core, the PE Array
and Post Process modules perform the computation for all
the conventional convolution, depth-wise convolution, fully-
connected, pooling, activation, residual and concatenation
layers. In the Memory System, we have 4 on-chip buffers,
which are designed in ping-pong manner, to perform data
communication with the external memory. Moreover, in each
module, we have a separate control module to update the
parameter registers defined in instructions, as well as to control
the data flow in these modules.

A. Computation Core

In the Computation Core, the PE Array finalizes the con-
volution of one layer block, while the Post Process handles
the accumulation of the intermediate results of different layer
blocks and other types of layers, such as pooling, residual
and concatenation layers. To fully leverage the advantages
of mixed precision CNNs, both the PE Array and the Post
Process modules are designed to support mixed precision
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Fig. 2: The architecture of one PE.

operations and can be programmed by the parameter registers
defined in the instructions.

1) Architecture of PE: As shown in Fig. 2(a), each PE has
multiple computation lanes to perform computation in parallel,
and one lane combination module is followed to combine or
select the results according to different parallelism modes.
Each computation lane is composed of a mixed precision
multiplier (MPM) array and an adder tree. In order to fully
utilize the resources on FPGA, we use the DSP slices to
implement the mixed precision multipliers, and we decompose
one DSP slice into several low precision multipliers to increase
the resource usage efficiency. As the weights and activations
are always quantized by different bit width in a CNN, we
propose the decomposition rule to support different bit width
of multiplier and multiplicand, as shown in Fig. 2(b). We share
the same multiplier B1 and use n multiplicands (A1, A2 to
An) to compact n multipliers into one DSP. In our imple-
mentation, we configure each DSP to perform as a multiply-
adder (P = A × B + C), and fit different operands (A,B
and C) to the multiply-adder according to different precision
combinations. As the signed multiplication of lower significant
bits may impact the higher significant bits, we introduce a
modification bit for each low precision multiplier. We explore
all the combinations of Ai and B1 in an exhaustive way and
conclude that the ith modification bit follows:

Mi =

{
Sign(B1)⊕ Sign(Ai) B1 6= 0 and Ai 6= 0

0 otherwise
, (1)

where Sign(x) indicates the sign of the data x and ⊕ means
xor. In this way, we just need to slice P into n parts to have
the product of each low precision multiplier.

For each computation lane in MP-OPU, the number of
DSPs is set to be fixed. Since each DSP can be decomposed to
multiple low precision multipliers, the number of outputs for
the MPM array varies according to the number of multipliers.
Therefore, the following adder tree is also designed to be pro-
grammable by the parameter registers, as shown in Fig. 2(c).
In order to use unified bit width for the adders in the adder
tree, we first do slicing and sign extension for each input in
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Fig. 3: Four levels of parallelism in MP-OPU.

the slicer. The aligned data are then fed into the 4-stage adder
tree. Afterwards, the sum of two 4-stage adder trees are either
summed up or concatenated according to the computation
mode. Moreover, some stages of the adder tree can also be
bypassed in order to support depth-wise convolution.

2) Parallelism Exploration: In order to speed up the cal-
culation of the CNN, we use four levels of parallelism in
the MP-OPU, as shown in Fig. 3. For the output channel
parallelism, we use one activation to multiply different kernels
to generate different activations of different output channels,
as shown in Fig. 3(a). In the input feature map parallelism
(shown in Fig. 3(b)), we will compute the convolution of
different activations in the same input feature map with
the corresponding kernels to produce one activation of one
output feature map. For the input channel parallelism (shown
in Fig. 3(c)), multiplication of activations in different input
channels and corresponding kernels are computed in parallel
and then summed up to form a result (or intermediate result)
of one output channel. The batch parallelism will calculate
activations from different input images in parallel. These four
levels of parallelism are selected according to different types
and parameters of the layers. For example, for the conventional
convolutional layer, we will use input channel parallelism in
each computation lane, and use output channel parallelism
among different computation lanes in each PE. Since each
output feature map channel is generated by convolving one
kernel and one input feature map channel in the depth-wise
convolutional layer, we use the input feature map parallelism
in each computation lane and output channel parallelism
among different computation lanes in each PE. To simplify
the design, we set all the PEs to be independent and only do
batch parallelism among different PEs.

B. Data Pre-fetch and Placement for on-chip Memory

Since the maximal bandwidth of the external memory is
fixed, we use ping-pong architecture and data pre-fetch module
to increase the run-time bandwidth of the external memory.
With ping-pong architecture, the communication time can be
hid under the computation time. The data pre-fetch module
manages to load as many data with different precision as
possible. As different parallelism levels require activations and
weights to be placed in different orders, we arrange and store
the data accordingly in the memory system in advance. On the
other hand, the feature maps are arranged during run-time to fit



TABLE I: Comparison with customized FPGA accelerators/processors on conventional CNNs.

OPU1024 [2] [13] [14] MP-OPU
Year 2019 2019 2020 2021

Device XC7K325T 2 XC7VX690T XC7VX485T XC7VX690T
Network VGG16 VGG16 Tiny-Yolo-V3 VGG16 Tiny-Yolo-V3
Bit width 8 mixed 1 18 mixed

Frequency (MHz) 200 156 200 200
DSP Used 516 - 2304 3072 2

Inference latency (ms) 88.7 200.9 - 11.2 2.91
Throughput/DSP (GOPS) 0.68 - 0.2 0.90 0.62
1 Weights are mixed precision while activations are 8-bit.
2 2048 DSPs are used for low precision multipliers while 1024 DSPs are used for adders.

TABLE II: Resource Utilization of MP-OPU on XC7VX690T.

Resource LUT LUTRAM FF BRAM DSP
Used 278548 42853 324033 912 3072

Available 433200 174200 866400 1470 3600
Utilization 64.3% 24.6% 37.4% 62.0% 85.3%

different parallelism levels. As the output feature map of one
layer will be the input of another layer, we add an extra data
rearrangement logic to change the data arrangement between
row major and channel major according to the parallelism
levels. Only when the parallelism level changes between two
adjacent layers, will the data rearrangement logic be enabled.

IV. EXPERIMENTS

A. Experimental Setup

The proposed MP-OPU is implemented on the Xilinx
VC709 evaluation board with an XC7VX690T FPGA. The
design is described in Verilog-HDL, synthesized and imple-
mented with Vivado 2020.1. For the network benchmarks, we
use both conventional and lightweight CNNs for a comprehen-
sive comparison to show the effectiveness of MP-OPU. These
CNNs cover different kernel sizes (1 × 1 and 3 × 3), strides
(1× 1 and 2× 2), and convolutional layer types (conventional
convolution and depth-wise convolution). In addition, irregular
layer operations such as residual and concatenation are also
included.

B. Hardware Implementation

In this work, 8 PEs are implemented. To balance the
usage of DSPs and LUTs, we use 256 DSPs to implement
mixed precision multipliers and 128 DSPs to implement mixed
precision adders in each PE. All the 256 DSPs for multipliers
are configured by the same parameter registers to support
multipliers with bit width varying from 2 to 8 bits. The
processor is designed to meet 200MHz timing constraints and
the detailed resource utilization is listed in Table II.

C. Comparison with Customized FPGA Accelerators

We further compare MP-OPU with 5 FPGA accelera-
tors/processors on both conventional and lightweight CNNs,
and the results are shown in Table I and Table III. As the
quantization method is not included in this paper, we use
the bit width generated by HAQ [5]. We use the inference
latency to evaluate the performance of running the network on

each FPGA processor/accelerator. Throughput/DSP, which is
defined as the throughput conducted by each DSP during run-
time, is utilized to indicate the efficiency of each design. The
image size is 416×416×3 for Tiny-Yolo-V3 and 224×224×3
for the other networks.

As shown in Table I, MP-OPU achieves 7.9× and 17.9× in-
ference latency reduction on VGG16 compared with OPU1024
and the accelerator in [13], respectively. In addition, MP-OPU
outperforms OPU1024 on throughput/DSP by 1.3×. As for
Tiny-Yolo-V3, we have 3.1× better throughput/DSP than the
prior accelerator. The approach in [13] does not report the DSP
utilization, but they use two XC7VX690T FPGAs while we
only use one. For MobileNet-V1/V2, MP-OPU performs 6.0×
and 10.1× reduction on latency on average compared with
existing works, respectively. Although we use more DSPs than
others, we still have 2.4× and 3.5× better throughput/DSP on
average, respectively. Better throughput/DSP indicates higher
computation efficiency during run-time, and this is one main
reason why we have lower inference latency.

D. Discussion

To further demonstrate the effectiveness of MP-OPU, we
evaluate the inference latency with respect to different bit
width combinations. We take Tiny-Yolo-V3 as an example and
the results are shown in Fig. 4. In general, the latency increases
as the bit width increases. The observation follows the rule
that one DSP can be decomposed to more multipliers when
the target bit width is small. However, the latency remains
unchanged when the bit width changes from 7-bit to 8-bit
because one DSP can only be decomposed into two multipliers
for both 7-bit and 8-bit. Furthermore, compared with the 8-
bit model, the inference latency of the 2-bit model reduces
to about 3.9×, although one DSP can only be decomposed
to 3× as many 2 × 2 multipliers as 8 × 8 multipliers. The
extra benefits come from the data pre-fetch module, where we
manage to fetch 4× as much 2-bit data as 8-bit data under
the same external memory bandwidth. For the 8-bit case, the
bandwidth constraints is still severe as we cannot hide all
the external communication time under the computation time,
especially for the layers with 1 × 1 kernel size. Therefore,
the percentage of the DSPs being effective during run-time is
less than 100%. The problem of bandwidth constraints can be
alleviated when the activations and weights decreased to 2-bit.



TABLE III: Comparison with customized FPGA accelerators/processors on lightweight CNNs.

[15] [16] [13] Light-OPU MP-OPU
Year 2018 2018 2019 2020 2021

Device Stratix V 5SGSD8 Arria 10 SoC 2 Stratix 10 XC7K325T XC7VX690T
Network MobileNet-V1 MobileNet-V2 MobileNet-V1 MobileNet-V1 MobileNet-V2 MobileNet-V1 MobieNet-V2
Bit width 16 8 mixed 1 8 mixed

Frequency (MHz) 133 150 156 200 200
DSP Used 1641 1278 - 704 3072 2

Inference latency (ms) 4.33 3.76 0.32 3.78 3.07 0.47 0.34
Throughput/DSP (GOPS) 0.13 0.06 - 0.21 0.14 0.38 0.29
1 Weights are mixed precision while activations are 8-bit.
2 2048 DSPs are used for low precision multipliers while 1024 DSPs are used for adders.
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V. CONCLUSIONS

In this paper, we propose a Mixed Precision Processor on
FPGA (MP-OPU) to leverage the advantages of mixed preci-
sion CNNs. We reuse part of the instructions and compilation
flow in Light-OPU and redesign the hardware processor. To
support mixed precision CNNs, the computation core is de-
signed to be run-time re-configurable to have different number
of multipliers according to the given precision. Meanwhile,
the ping-pong architecture, pre-fetch and data rearrangement
logic in the memory system make fully utilization of the
bandwidth of the external memory. By mapping on Xilinx
VC709, MP-OPU can reach 4.92 TOPS peak throughput when
configuring to only support 2-bit. Our experimental results
show that MP-OPU manages to reduce inference latency by
12.9× and increase throughput/DSP by 2.2× for conventional
CNNs on average, respectively. Also, the average latency
reduction is 7.6× and the throughput/DSP increment is 2.9×
for lightweight CNNs.
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