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Low Precision Floating-point Arithmetic for High
Performance FPGA-based CNN Acceleration

Chen Wu, Mingyu Wang, Xinyuan Chu, Kun Wang, Lei He

Abstract—Low precision data representation is important to
reduce storage size and memory access for convolutional neural
networks (CNNs). Yet, existing methods have two major limi-
tations: (1) requiring re-training to maintain accuracy for deep
CNNs, and (2) needing 16-bit floating-point or 8-bit fixed-point
for a good accuracy. In this paper, we propose a low precision (8-
bit) floating-point (LPFP) quantization method for FPGA-based
acceleration to overcome the above limitations. Without any re-
training, LPFP finds an optimal 8-bit data representation with
negligible top-1/top-5 accuracy loss (within 0.5%/0.3% in our
experiments, respectively, and significantly better than existing
methods for deep CNNs). Furthermore, we implement one 8-
bit LPFP multiplication by one 4-bit multiply-adder (MAC)
and one 3-bit adder, and therefore implement four 8-bit LPFP
multiplications using one DSP slice of Xilinx Kintex 7 family
(KC705 in this paper) while one DSP can implement only two 8-
bit fixed-point multiplications. Experiments on six typical CNNs
for inference show that on average, we improve throughput
by 64.5× over Intel i9 CPU and by 1.5× over existing FPGA
accelerators. Particularly for VGG16 and YOLO, compared to
six recent FPGA accelerators, we improve average throughput
by 3.5× and 27.5× and improve average throughput per DSP by
4.1× and 5×, respectively. To the best of our knowledge, this is
the first in-depth study to simplify one multiplication for CNN
inference to one 4-bit MAC and implement four multiplications
within one DSP while maintaining comparable accuracy without
any re-training.

Index Terms—low precision floating-point, CNN, deep learning,
FPGA processor, FPGA acceleration

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have
demonstrated a breakthrough in performance for a broad

range of applications including object recognition [1], object
detection [2] and speech recognition [3]. However, CNNs
often have huge computation complexity. This motivates ac-
celerating CNNs by CPU/GPU clusters [4], FPGAs [5] and
ASICs [6]. Customized accelerators/processors on FPGAs
have shown more promising throughput and power efficiency
than traditional CPU/GPU clusters [7], [8].

Larger and deeper CNNs have been developed to improve
performance for a broader range of scenarios. For example,
the top-5 error for ImageNet [9] classification decreases from
17% to 2.9%. However, computation complexity and number
of parameters increase dramatically as depicted in Figure
1. To be specific, the computation complexity of a feed-
forward process of a 224×224 RGB image increases from
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Fig. 1. Computation complexity and memory requirement with respect to
different CNNs.

TABLE I
RESOURCE UTILIZATION OF MULTIPLIERS ON FPGA FOR DIFFERENT
DATA REPRESENTATIONS. DSP: DIGITAL SIGNAL PROCESSING, LUT:

LOOK-UP TABLE, FF: FLIP-FLOP. M4E3: 1-BIT SIGN, 4-BIT MANTISSA
AND 3-BIT EXPONENT.

Data Representation DSP LUT FF
one 16-bit floating multiplication 1 85 167

one 16-bit fixed multiplication 1 0 0
two 8-bit fixed multiplications 1 2 0

four 8-bit floating (M4E3) multiplications 1 20 27

2.27 GOP of AlexNet [10] in 2012 to 74 GOP of EfficientNet-
B7 [11] in 2019. At the same time, the number of parameters
stays large at 264 MB. Such great computation complexity
makes it harder for general-purpose processor to meet the
requirements of real-time applications. On the other hand,
the great quantities of parameters lead to a big challenge
for communication between off-chip and on-chip memories
because of bandwidth constraints.

There are two types of research to reduce computation and
parameter complexities for CNN inference. The first one is
deep compression including weight pruning, weight quantiza-
tion and compression storage [12], [13]. However, irregularity
caused by deep compression degrades parallelism and hard-
ware performance. Cambricon-S [14] alleviates irregularity in
sparse neural networks through a software/hardware co-design
approach to improve hardware performance. However, all the
above accelerators need time-consuming re-training process to
maintain accuracy.

The second type of research is more efficient data repre-
sentation, also known as quantization for circuit implemen-
tation. [15] used 16-bit floating-point in contrast to 32-bit
commonly used for computing. However, one 16-bit floating-
point multiplier on FPGA needs 1 DSP, 85 LUTs and 167
FFs when using Xilinx floating-point IP [16] as shown in
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Table I, leading to a low hardware efficiency. Since one 16-
bit or smaller fixed-point multiplier can be fit into one DSP,
both 16-bit [17], [18] and 8-bit [6], [19]–[21] fixed-point
were employed to gain more hardware efficiency than 16-
bit floating-point does. Another 8-bit arithmetic, called block
floating-point (BFP), was also applied [22], [23], where a
parameter has its own mantissa but shares a same exponent
for one data block. [24] proposed a mixed data representation
with floating-point for weights and fixed-point for activations
(e.g., outputs of a layer). [25] developed an 8-bit floating-
point quantization scheme, which needs an extra inference
batch to compensate for the quantization error. However, [24]
and [25] did not present a circuit design for their approaches.
While all aforementioned work has a good accuracy with re-
training, more aggressive data representations such as binary
[26], ternary [27], and mixed precision (2-bit activations and
ternary weights) [28] may suffer from great accuracy loss even
with time-consuming re-training.

In this paper, we first propose a low precision floating-
point (LPFP) to quantize both weights and activations. During
the quantization process, an optimal LPFP data format and
the corresponding scale factor are decided for a workload of
CNNs. Our proposed quantizer works for deep CNNs (more
than 100 convolutional/fully-connected layers). On average,
the top-1 accuracy loss is within 0.5%, while V-Quant [29]
that works for such deep CNNs has a top-1 accuracy loss
about 1% with fine-tuning. Then, we design a LPFP based
FPGA processor to further improve the performance for CNN
inference. We are able to implement four 8-bit floating-point
multiplications within one DSP (see Table I). We experimented
for inference of AlexNet, VGG16 [30], ResNet50/101/152 [31]
and DenseNet201 [32] via Xilinx KC705. We can achieve
an average throughput of 1100.4 GOPS (Giga-Operations Per
Second), and it is 1.43 GOPS per DSP. Moreover, the average
throughput for these networks is 64.5× and 1.5× over Intel
i9 CPU and existing accelerators, respectively. Compared with
six existing accelerators for VGG16 and YOLO, on average,
our processor improves throughput by 3.5× and 27.5×, while
improveing per DSP throughput by 4.1× and 5×, respectively.

While existing work needs re-training (including calibration
[25] and fine-tuning [33]), our quantization method does not
need any re-training to compensate for quantization error.
Furthermore, to the best of our knowledge, this is the first
work that can fit four 8-bit multiplications for inference in
one DSP while maintaining comparable accuracy without any
re-training.

II. BACKGROUND AND MOTIVATION

A. Background

1) CNNs: CNNs are used to classify or recognize objects
by passing the inputs through multiple types of layers. In each
layer, multiple neurons are constructed to process different
inputs and pass the outputs to the next layer through connec-
tions, and the connections are used to store the weights for the
network. Based on different processing procedures, the layers
are typically divided into convolutional, pooling, activation,
normalization, fully-connected, residual and inception layers.

TABLE II
CHARACTERISTICS OF CNN BENCHMARKS. GOP IS GIGA-OPERATIONS

NEEDED BY ONE 224×224 RGB IMAGE.

CNN Type Operations Model Weights
AlexNet slim 2.27 GOP 249.51 MB
VGG16 slim 30.94 GOP 553.43 MB

ResNet50 medium 9.74 GOP 46.05 MB
ResNet101 medium 19.70 GOP 166.37 MB
ResNet152 deep 29.39 GOP 229.39 MB

DenseNet201 deep 10.85 GOP 68.63 MB

Among them, convolutional/fully-connected layers consume
most portions of computation while fully-connected layers
require largest memory to store weights. According to this,
we divide the size of CNNs into three categories with respect
to the number of convolutional/fully-connected layers: 1) slim
for less than 50 layers, 2) medium for 50 to 100 layers, and
3) deep for more than 100 layers, as shown in Table II where
we report the detailed network information.

2) Low Precision Floating-point: Similar to the definition
of 32-bit floating-point from the IEEE-754 standard [34],
the binary representation of LPFP number comprises sign,
mantissa and exponent in order. The decimal value of LPFP
number is then calculated by:

Vdec = (−1)S × 1.M × 2E−Eb , (1)

where Vdec is the value in decimal, S,M and E are all
unsigned values and denote the sign, mantissa and exponent,
respectively. For exponent bias Eb in Eq. (1), it is introduced
to both positive and negative exponents as

Eb = 2DWE−1 − 1, (2)

where DWE is the data width of E. Different from the IEEE
Standard, data widths for M and E in this paper are not fixed.
In later sections, we use the term MaEb to indicate different
combinations, where a and b indicate the bit width of M and
E, respectively. For example, M3E4 means the mantissa is 3
bits while the exponent is 4 bits.

There are three special definitions in IEEE-754 standard.
The first is subnormal numbers when E = 0, then Eq. (1) is
modified to:

Vdec = (−1)S × 0.M × 21−Eb . (3)

Note that Infinity (Inf) and Not a Number (NaN) are the other
two special cases, but are not used in our work. This is because
our saturation scheme saturates large numbers to the maximal
number, as illustrated in detail in Subsection III-A.

B. Motivation

CNN accelerators with lower data width have significant im-
provements in terms of memory size, memory bandwidth and
power efficiency. Due to the lack of floating-point arithmetic
units in FPGA, researchers have used low precision fixed-point
instead of floating-point. A 16-bit fixed-point quantization to
find the best scale factor for each layer was proposed in [17].
However, this required time-consuming re-training to amend
the weights to maintain accuracy. Furthermore, a model was
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developed to quantitatively analyze the convolution loops and
optimize design objectives such as memory access and latency
[18]. However, it had an accuracy loss as large as 2%. A shared
drawback for the above two approaches is the low per DSP
throughput (0.279 GOPS/DSP for [17] and 0.472 GOPS/DSP
for [18]) because of using 16-bit multiplication.

An 8-bit fixed-point accelerator was designed in [35] for
embedded FPGAs, with a low per DSP throughput of 0.444
GOPS/DSP. DNNBuilder [36] aimed to automatically build
high-performance DNN hardware accelerators for both cloud-
and edge-FPGAs with 8-bit fixed-point quantization. It in-
creased the per DSP throughput to 0.771 GOPS by better
architecture exploration; however, its quantization method
incurred 4.6% top-1 accuracy degradation without fine-tuning.
FPGA accelerator with the aforementioned BFP arithmetic
[23] had a per DSP throughput of 0.741 GOPS. However,
only slim and medium CNNs were validated in their approach.
In short, existing approaches cannot improve the per DSP
throughput while maintaining comparable accuracy for all
slim, medium and deep CNNs without using any re-training
techniques.

III. LOW PRECISION FLOATING-POINT QUANTIZATION

In this section, we present the details of our proposed low
precision floating-point (LPFP) quantization method, including
the quantization process, data flow in processor and quantiza-
tion results.

A. Quantization Process

Our proposed LPFP quantization method is applied to both
activations and weights. The quantization function is defined
as follows:

Vlfp = quan(Vfp32 × 2sf ,MINlfp,MAXlfp), (4)

where Vlfp and Vfp32 denote the decimal values represented
by LPFP and traditional single floating-point format, respec-
tively; MINlfp and MAXlfp indicate the minimal and maxi-
mal numbers represented by LPFP, and sf is the scaling factor
which is used to better fit the data into the dynamic range of
LPFP. The quan function in Eq. (4) rounds the data to the
nearest value with saturation considered, formulated as

quan(x,MIN,MAX) =


MIN x <= MIN

MAX x >= MAX

round(x) otherwise
, (5)

where MIN and MAX are the minimal and maximal values,
respectively.

The mean square error (MSE) of the values before and after
quantization is used as the metric to evaluate the quantization
error, illustrated as:

MSE =
1

N

N∑
i=0

(Vlfp/2
sf − Vfp32)

2, (6)

where N denotes the amount of data.
As illustrated from Eq. (4) to (6), MSE is influenced by

the data format of LPFP and the scaling factor (sf ). We will

LPFP Quantization
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Fig. 2. The data flow in our processor with M4E3 data format as an
example (FP: floating-point, Mult: LPFP multiplier, AM: alignment module,
Acc: accumulator, DC: data converter).

find an optimal combination of LPFP data format and scaling
factor for least MSE. In this paper, we assume the same data
format for a CNN and a same scaling factor for each layer.
This assumption can be removed as needed. Furthermore, we
choose to use a same optimized data format for all test cases
in our experiments, while the problem formulation is to decide
a data format for each CNN.

B. Data Flow in Processor

The data flow to run inference of a quantized network in
our processor is shown in Figure 2. In order to explicitly
illustrate the data flow, we list the bit width in each step
with M4E3 data format as an example. All the input image,
weights and biases are represented by 32-bit floating-point. In
our processor, the raw input image which indicates the input
of the first layer and all the weights are quantized with M4E3
data format and stored in external memory, while biases are
quantized to 16-bit fixed-point to reduce quantization error.
Multiplications are performed with the quantized image and
weights, and the 15-bit floating-point (M10E4) products are
converted to 23-bit fixed-point without any precision loss. In
this way, all the accumulation can be done in fixed-point
accumulators, which consumes fewer resources in FPGA than
floating-point accumulators. The final outputs in each output
channel are converted to M4E3 floating-point again (and
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stored in the external memory) before being used by another
CNN layer. In the data flow, only the final data conversion
step introduces bit truncation and precision loss. However, the
precision loss introduced by the final step has little impact on
the final accuracy and is validated in Subsection III-C with
comprehensive experimental results.

C. Quantization Results

1) Experiment Setup: We implement our LPFP quantization
method with C language based on the Darknet framework [37],
and the inference process of the quantized network follows
the same data flow as that in our processor illustrated in
Figure 2. The validation accuracy with single center-crop is
then evaluated via the ImageNet validation set (50,000 labelled
images) [9]. Our quantization process is run on an Intel (R)
Core (TM) i9-7960X CPU working under 2.86GHz, while
the evaluation process is run on a Nvidia TITAN Xp GPU.
Six representative CNNs including the slim, medium and deep
CNNs are evaluated, as listed in Table II.

2) 8-bit Quantization: The detailed validation accuracies on
the quantized networks with 8-bit floating-point data format
are shown in Figures 3 and 4. We emulate all 8 different
(mantissa, exponent) combinations to validate the top-1 and
top-5 accuracy of the quantized CNNs, and the 32-bit floating-
point results are included as the baseline.

In Figures 3 and 4, the dashed lines illustrate the 32-
bit floating-point baseline, while the values above the dashed
lines are the accuracy loss compared with the baseline. We
can see that our LPFP quantization approach can maintain
comparable top-1 and top-5 accuracy to the baseline. On
average, the top-1 and top-5 accuracy loss is within 0.5% and
0.3% compared with the full precision results, respectively.
Particularly, M5E2 always achieves the highest accuracy
compared with the other cases. Data formats with more than or
equal to 3-bit mantissa all have a low accuracy loss for all the
six CNNs, while those with less than 3-bit mantissa can hardly
find accurate results. We also compare our proposed approach
with the fixed-point situation, marked as M7E0 in the figures
(M7E0 means 1-bit sign, 7-bit mantissa and no exponent,
exactly fixed-point). As shown in Figures 3 and 4, M4E3
and M5E2 outperform the fixed-point for all six benchmarks.
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3) Lower Bit Width Quantization: We further reduce the
bit width from 8-bit to 4-bit and also evaluate the top-1 and
top-5 accuracy of the quantized networks. We pick the best
(mantissa, exponent) combination for each data format and the
results are shown in Figure 5. We can see that both the top-1
and top-5 accuracy decrease when lower bit length is utilized
to represent the weights and activations of CNNs. Particularly,
the average top-5 accuracy degradations for 7-bit and 6-bit
are 0.8% and 4.2%, respectively. However, the accuracy drops
dramatically when the bit width decreases to less than 6 bits,
which means our LPFP quantization approach can hardly find
accurate results without any re-training process.

4) Comparison with the Prior Quantization Strategies:
M4E3 and M5E2, which achieve the two best accuracies
among all the test cases, are also compared with five typical
approaches. We report both the top-1 and top-5 accuracy for
all six benchmarks in Table III, where ”-” indicates no reported
results in the literatures. We use the normalized top-1 accuracy
in Table III for the approaches proposed by ARM [24] and
Xilinx [25] as reported in their paper. The top-1 and top-5
accuracy in Table III show that our LPFP quantization method
without any re-training can outperform the literatures in most
cases. Moreover, besides the approach proposed by Nvidia
[38], our method is the only one that can reach deep networks.

IV. PROCESSOR ARCHITECTURE

In this section, we discuss in detail the architecture of the
processor, which efficiently supports the inference process of
quantized networks for various CNNs.

A. Overview

The overall architecture of the proposed processor is de-
picted in Figure 6. A floating-point function unit (FPFU),
which is composed of multiple processing elements (PEs),
is developed to compute the outputs of a layer in parallel.
The PE, which is the key component of FPFU, is designed to
efficiently perform dot product with LPFP data format. The
on-chip memory system (MS) consists of three buffers, e.g.,
input feature map buffer (IFMB), weight buffer (WB) and
output feature map buffer (OFMB). All these three buffers
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TABLE III
ACCURACY COMPARISON BETWEEN M4E3, M5E2, REFERENCES AND FP32. ”-” MEANS NO REPORTED RESULTS. RESULTS FOR ARM AND XILINX
ARE NORMALIZED TOP-1 ACCURACY AS REPORTED IN THEIR PAPERS WITHOUT CIRCUIT IMPLEMENTATIONS AND WE CONVERT THEM INTO ACTUAL

ACCURACY, WHILE OTHERS ARE BASED ON CIRCUIT IMPLEMENTATIONS.

Top-1 Accuracy (%) Top-5 Accuracy (%) for each network
AlexNet VGG16 ResNet50 ResNet101 ResNet152 DenseNet201

Angle-Eye [35] - - 67.72 88.06 - - - - - - - -
Nvidia [38] 57.05 80.06 70.84 - 73.10 91.06 74.40 91.73 74.70 91.78 - -
ARM [24] 56.71 - 70.38 - - - - - - - - -
Xilinx [25] - - - - 75.80 - - - - - - -
BFP [23] - - 68.32 - 72.76 - - - - - - -

FP32 (Baseline) 57.28 80.18 70.38 89.81 75.80 92.90 77.10 93.70 77.60 93.83 76.85 93.62
Ours (M4E3) 56.69 79.99 70.05 89.68 75.25 92.75 76.68 93.60 76.79 93.44 76.40 93.43
Ours (M5E2) 56.77 80.05 69.74 89.49 75.37 92.71 76.43 93.33 77.05 93.62 76.55 93.49
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Fig. 5. Top-1 and top-5 accuracies for different bit width with respect to
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are ping-pong architecture to hide the communication time
between on-chip and off-chip memories through direct mem-
ory access (DMA) module. The central control module (CCM)
is designed to arbitrate between different modules. Moreover,
the CCM decodes various instructions stored in the instruction
RAM (IR) into detailed signals for other modules.

B. Floating-point Function Unit

FPFU, which is constructed by multiple PEs, is designed
to perform convolution in LPFP data format efficiently for
performance gain and power reduction. Different parallel
computation patterns, including parallel in input feature maps,
parallel in output feature maps and parallel in both input and
output feature maps, are developed in FPFU and are discussed
in the following paragraphs. FPFU receives activations and
weights from IFMB and WB, respectively, and distributes the
activations and weights to different PEs to perform convolution
according to the control signals decoded by CCM.

1) Architecture of PE: The PE is designed as a fully
pipelined data-flow-based architecture, as shown in Figure 7.
Once a PE receives two vectors, it distributes the data to Nm

multipliers inside the PE, whose full precision floating-point
results are transferred into the alignment module (AM). The
full precision floating-point products are aligned and converted
to fixed-point numbers without any bit truncation. The aligned
products are then fed into four fixed-point adder trees to final-
ize four dot product processes in parallel, which indicates the
feed-forward process of four pixels in two output channels (see

PE0

…
…

…
…

FPFU

DMA

IFMB

PEn

…
…

…

WB

OFMB

MS

External
Memory

CCM IR

Fig. 6. The overall architecture of proposed processor.

details in Subsubsection IV-B2). The accumulation of partial
results (including bias), pooling and activation processes are
performed in series inside the post process module (PPM).

The multipliers in each PE are developed for LPFP,
which are represented with scientific notation in the sign-
and-magnitude format, as illustrated in Eqs. (1) and (3).
The multiplication of two LPFP numbers is then divided
into three fixed-point components: (1) XOR of the signs; (2)
multiplication of mantissas; (3) addition of exponents. Take the
MaEb format as an example. An a-bit unsigned MAC and a
b-bit unsigned adder are needed. Although the multiplication
of mantissas should be a+1-bit considering the first hidden bit
of mantissas – ”1” for normal numbers and ”0” for subnormal
numbers – we design the a-bit MAC to perform the a + 1-
bit multiplication to improve per DSP throughput (see details
in Subsection V-B). Meanwhile, the exponent bias Eb is not
included during addition, because the Eb is the same for all
the numbers in one CNN as we assume, and we can address
this at the last step to simplify the adders.

2) Parallel Computation Pattern: During the convolution
process, each pixel in one output channel is calculated as

yi =

KW×KH∑
k=0

IC∑
ic=0

xk,icwk,ic + bi, (7)

where IC indicates the number of input channel, KW and
KH denotes the width and height of the kernel, and x, y, w
and b are input activation, output activation, weight and bias,
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Fig. 8. Parallel computation pattern in one PE.

respectively. In our implementation on FPGA, we implement
4 LPFP multipliers with one DSP slice, which follows the
pattern: (a+ b)× (c+ d) = ac+ bc+ ad+ bd (see details in
Subsection V-B). Therefore, each PE is designed to process
convolution in two output channels in parallel, and in each
output channel, it will calculate the convolutional results of
two pixels at the same time, as shown in Figure 8. To be
specific, in the first cycle, the first pixel in IC input channels
and the first value in the corresponding kernels are fed into
the PE, marked with a and c in Figure 8, respectively. To
follow the computation pattern in these four multipliers, the
second pixel in IC input channels (marked with b), and the
corresponding kernels to calculate the pixel in another output
channel (marked with d) are also fed into the PE. In this way,
a and b are reused to produce the pixels in different output
channels, while c and d are reused to produce the pixels in
different positions of the same output channel. After KW ×
KH cycles, four convolution results are produced by one PE.

As illustrated in Subsubsection IV-B1, Nm multipliers are
used in each PE, and IC is designed to be Nm/4. In this
way, Nm/4 input channels are calculated in parallel in each
PE. With the corresponding weights and biases, 2 pixels in 2
output channels are calculated in parallel. When the number of

input channels is larger than Nm/4 and/or when the number of
pixels in each output channel is larger than 2 and/or when the
number of output channels is larger than 2, multiple rounds of
computation are needed in series to finalize the convolution.
In order to further increase the parallelism, we use Np PEs in
the FPFU. In different PEs, we can feed in different pixels in
input feature maps and weights to perform different parallel
computation pattern. For example, the Np PEs can share the
same input feature map and use different weights to parallelize
the computation in output channels, or the Np PEs can share
the same weights and use different input feature maps to
parallelize the computation in input channels. The Nm, Np and
the parallel computation pattern are decided by considering the
CNNs, the throughput and the bandwidth requirement. This
will be explained with experiments in Subsubsection V-B1.

C. Memory System

Following the computation pattern in PE, the IFMB and
the WB are set to provide Nm/2 LPFP input activations and
weights to each PE at every cycle, respectively, while the
OFMB needs to save 4 output activations from each PE at
every cycle. Although each pixel in the output feature map is
represented with LPFP data format, we keep the intermediate
results with 16-bit precision to reduce accuracy loss. In this
way, the bit width of OFMB for each PE is set to 64 bits.
As the input activations and/or weights can be shared by
different PEs according to different computation patterns, we
define Pifm and Pofm (Pifm × Pofm = Np) to indicate
the parallelisms in input feature map and output feature map,
respectively. In this definition, Pifm indicates that we have
Pifm PE groups where the same weights are shared during
calculation, while in each PE group, Pofm PEs share the same
input activations. Therefore, the bit width for IFMB, WB and
OFMB are Nm/2× Pifm ×BW , Nm/2× Pofm ×BW and
64Np, respectively, where BW denotes the bit width of LPFP
data format.

The parameters Nm, Pifm and Pofm are decided to trade off
between the throughput, bandwidth requirement and resource
utilization. The sizes of the three buffers also determine the
throughput and resource utilization. Previous proposed work
applied large enough buffers to store all the activations or
weights for one layer [39] to avoid costly off-chip mem-
ory access. However, such designs incurred large area and
unscalability for larger and deeper CNNs. In our processor,
we trade off among the throughput, bandwidth requirement,
resource utilization and scalability, and employ the smallest
sizes which can hide the DMA communication time. In our
implementation on FPGA, we use block RAM to deploy IFMB
and OFMB, while we use distributed RAM to deploy WB,
as distributed RAM can provide higher bandwidth than block
RAM. During inference on our processor, only when all the
input feature maps have been processed and reused, or all the
weights have been processed and reused, or OFMB is full,
will the off-chip memory be accessed for loading new input
feature maps, loading new weights or storing output feature
maps, respectively.
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Fig. 9. Data format of the DSP to implement four 4-bit MACs.
Ma,Mb,Mc and Md: the mantissas of LPFP data a, b, c and d, respectively;
ExMaMc , ExMaMd

, ExMbMc and ExMbMd
: the extra term expressed as

ExMaMc = 1.Ma + 0.Mc; Pac, Pad, Pbc and Pbd: the mantissas of the
product of two LPFP data expressed as Pac = 1.Ma × 1.Mc.

D. Central Control

The CCM is designed to arbitrate among different modules
and control the whole execution process. First, CCM decodes
the instructions from IR efficiently and sets the corresponding
control registers. Second, different modules are activated ac-
cording to the control registers and the status of each module
is monitored by the control registers as well. Finally, the CCM
decides when to fetch the next instruction from the feedback
of the control registers. We also design a compiler to generate
the block-level instructions.

V. EVALUATION

In this section, the environment setup of our evaluation is
first introduced, then the implementation details and compre-
hensive experimental results are provided.

A. Environment Setup

Our processor is implemented on the KC705 evaluation
board, which includes a Xilinx Kintex-7 XC7K325T FPGA
and a 1GB DDR3 module. First, we explore the parallel
computation patterns to find the optimal parameters to best
fit the FPGA on KC705. Second, with these parameters, the
processor is described in Verilog-HDL, and synthesized and
implemented with the Xilinx Vivado 2018.2 Design Suite.
Finally, we evaluate the throughput and per DSP throughput
of running different networks (shown in Table II) on our
processor, and the results are compared with two prior ac-
celerators [18], [33]. The Intel (R) Core (TM) i9-7960X CPU
under 2.86GHz working frequency and the Nvidia TITAN Xp
GPU with a 12GB DDR5 are also used for comparison. More
comprehensive experimental results on VGG16 and YOLO are
compared with latest FPGA accelerators [15], [17], [18], [23],
[33], [35], [40].

B. Implementation Details

We use the M4E3 data format for FPGA implementation
in this paper for two reasons. First, M4E3 achieves the top

two best validation accuracies among all the LPFP (mantissa,
exponent) combinations we tested (see Subsection III-C).
Particularly, the average top-1 and top-5 accuracy loss of
M4E3 compared with 32-bit floating-point are 0.53% and
0.19%, respectively. Second, M4E3 only needs a 4-bit fixed-
point MAC and a 3-bit fixed-point adder, resulting in fewer
resources on FPGA than M5E2. To be specific, four 4-bit
fixed-point MACs can be implemented inside one DSP48E1
slice in XC7K325T FPGA.

In order to clearly explain the way to implement four MACs
with one DSP48E1 slice, we take the multiplication of two
normal numbers (X and Y ) as an example. The mantissa of
the product can be explained as:

Prod = 1.Mx × 1.My × 2(2−Ex−Ey)

= (0.Mx × 0.My + (1.Mx + 0.My))× 2(2−(Ex+Ey)),
(8)

where Mx,My, Ex and Ey are the mantissas and exponents
of X and Y , respectively. In Eq. (8), the term 0.Mx×0.My+
(1.Mx+0.My) is performed with a 4-bit unsigned fixed-point
MAC and the term Ex + Ey is performed with an extra 3-
bit unsigned fixed-point adder. As the DSP48E1 slice can be
implemented as a MAC followed by P = A×B +C (where
the maximal bit width of A,B and C are 25, 18 and 48,
respectively), we add blank bits to the three inputs to fully
utilize the functionality of DSP48E1, as shown in Figure 9.
During the calculation process, the dot position is kept at the
right most position. That is, the terms 0.Mx and 0.My are
converted to 4-bit integers, while the extra term 1.Mx+0.My

is converted to 10-bit integers to make sure that no overlap
occurs. In this way, with a few LUTs and FFs to perform
additions of the exponents and the extra term 1.Mx + 0.My ,
four multiplications with M4E3 data format can be carried
out in on DSP slice (see Table I), thus dramatically increasing
the per DSP throughput.

1) Parallel Exploration: Since one DSP slice is divided into
four 4-bit LPFP MACs in our implementation, the parameters
should meet the requirement that Nm×Np = 4×#ofDSP .
Considering the resources of XC7K325T FPGA, we set the
targeted number of DSP as 768, which accounts for 91.43%
of the available DSPs. We then evaluate the throughput for
different CNNs and the bandwidth requirement with respect
to different Nm and Np combinations as shown in Figures 10
and 11, respectively. We also explore different combinations
of the parameters Pifm and Pofm, and only depict the Pifm

and Pofm for achieving the optimal throughput and minimal
bandwidth requirement in Figures 10 and 11.

In general, when Nm keeps increasing, the throughput first
increases and then decreases when it reaches the peak. The
small Nm and large Np indicate that more output channels
are calculated in parallel while large Nm and small Np mean
more input channels are calculated in parallel. When Nm is
larger than the total number of input channel (denoted as
IC), only IC multipliers are used while the rest are wasted,
resulting in a low throughput. This is the same for large Np,
and the peak throughput comes from balanced Nm and Np. For
different CNNs, the peak throughput comes from different Nm



8

0

200

400

600

800

1000

1200

(4, 768) (6, 512) (8, 384) (12, 256) (16, 192) (24, 128) (32, 96) (48, 64) (64, 48) (96, 32) (128, 24) (192, 16) (256, 12) (384, 8) (512, 6) (768, 4) (1024, 3) (1536, 2) (3072, 1)

Th
ro

ug
hp

ut
(G

O
P/

s)

Alexnet VGG16 Resnet50 Resnet101 Resnet152 Densenet201

Fig. 10. Throughput for different CNNs with respect to different Nm and
Np combinations.

TABLE IV
RESOURCE UTILIZATION IN XC7K325T.

Resource LUT LUTRAM FF BRAM DSP
Used 154625 7860 180561 234.5 768

Available 203800 64000 407600 445 840
Utilization 75.87% 12.28 44.30% 52.70% 91.43%

and Np combinations due to different network configurations.
For example, DenseNet201 has lots of inception layers, which
concatenate layers with small output channels (e.g., 32) to
form layers with large input channels (e.g., 1568). In this case,
larger Nm and smaller Np incur fewer wasted computations
and lead to higher throughput. From Figure 10, we can see
that the combination of Nm = 96 and Np = 32 results in an
optimal throughput for all cases on average.

The bandwidth requirement is extremely high when Np is
large. This is because larger Np indicates more parallel com-
putations in output channels. Moreover, OFMB is designed
to store 16-bit intermediate results, which also lead to higher
bandwidth requirement with larger Np. The total bandwidth
requirement decreases when Np decreases, and then increases
again since larger Nm needs more bandwidth to load input
activations and weights. The smallest bandwidth requirement
comes when we have a balanced combination of Nm and Np.
As concluded from Figure 11, the optimal combinations are
Nm = 96, Np = 32 and Nm = 128, Np = 24. Take the case
for optimal throughput, we set Nm = 96 and Np = 32 in this
implementation.

C. Experimental Results

1) Resource Utilization: Given the parameters that Nm =
96 and Np = 32, the detailed post-implementation resource
utilization under 200MHz working frequency is listed in
Table IV.

2) Throughput and per DSP throughput for Different CNNs:
Six representative CNNs, including slim, medium and deep
networks (see Table II), are mapped on our processor. When
calculating the CNN size, one MAC is counted as two opera-
tions. The throughput is measured in GOPS (Giga Operations
Per Second), and is reported for different networks on our
processor, Intel i9 and Nvidia TITAN Xp in Table V. For
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Fig. 11. Bandwidth requirement with respect to different Nm and Np

combinations.

the evaluation on Intel i9 and Nvidia TITAN Xp, we run the
CNNs using the Darknet framework with batch size = 1 and
32-bit floating-point data format. As the existing studies [18]
[33] support multiple networks, we also include their results
in Table V.

Compared with the existing accelerators, our processor
outperforms them in both throughput and per DSP throughput.
Particularly, the average improvement of throughput is 63.5%
and 38.6% compared with [18] and [33], respectively. More-
over, the average improvement of per DSP throughput is 2.2×
compared with [18]. In the approach proposed in [33], they
use LUT to implement multipliers, so we do not compare per
DSP throughput with them. Our FPGA processor outperforms
Intel i9 by 64.5× in terms of throughput because of the high
parallelism in our processor. Although Nvidia TITAN Xp can
achieve higher throughput (due to more hardware resources)
than our processor does, the average power of Nvidia TITAN
Xp is 286W, and the average power efficiency of our processor
is 6.9× of the Nvidia TITAN Xp.

3) Comparison with Previous Accelerators on VGG16:
We run the classification network VGG16 on our processor,
and compare the results with six typical studies, as shown
in Table VI. We also list the detailed implementation infor-
mation, such as platform, working frequency and quantization
strategy in Table VI. First, our processor, which uses the LPFP
quantization scheme, has a negligible top-1 and top-5 accuracy
degradation of 0.33% and 0.13%, respectively. Although the
work in [15] and [33] can maintain lower accuracy loss than
ours, the approach in [15] uses 16-bit floating-point data
format, which results in higher bandwidth and memory re-
quirement and lower per DSP throughput, while the approach
in [33] needs 144 extra hours for the fine-tuning process.
Second, our processor outperforms all the six accelerators in
terms of throughput and per DSP throughput. Particularly, the
improvements of throughput and per DSP throughput are from
24% to 11.89× and from 92% to 11.14×, respectively. These
improvements mainly come from the parallel computation
pattern in FPFU and the implementation of four 4-bit MACs
within one DSP slice. To the best of our knowledge, this
is the first work that can simplify the multiplication to 4-
bit and implement four MACs inside one DSP slice while
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TABLE V
COMPARISON BETWEEN INTEL I9 CPU, NVIDIA TITAN XP GPU, EXISTING ACCELERATORS AND OUR PROCESSOR WITH RESPECT TO DIFFERENT

CNNS. ”-” MEANS NO REPORTED RESULTS.

Throughput (GOPS) per DSP throughput (also called DSP efficiency, unit: GOPS/DSP) for each network
AlexNet VGG16 ResNet50 ResNet101 ResNet152 DenseNet201

Intel i9 14.1 - 19.7 - 16.8 - 20.1 - 19.2 - 13.4 -
Nvidia TITAN Xp 4540.0 - 4760.0 - 4234.8 - 4925.0 - 4198.6 - 4340.0 -

Ma, et. al. [18] - - 715.9 0.47 611.4 0.40 - - 707.2 0.47 - -
RNA [33] 687.8 - 878.1 - 804.3 - - - - - - -

ours 1066.4 1.39 1086.8 1.42 1101.9 1.43 1121.4 1.46 1121.3 1.46 1104.7 1.44

TABLE VI
COMPARISON WITH PRIOR ACCELERATORS ON VGG16. ”-” MEANS NO REPORTED RESULTS.

Mei, et.al. Xiao, et. al. Ma, et. al. Angle-Eye RNA BFP ours[15] [17] [18] [35] [33] [23]
Year 2017 2017 2018 2018 2018 2019 2019

Platform XC7VX690T XC7Z045 Arria 10 GX1150 XC7Z020 XC7Z045 XC7VX690T XC7K325T
Frequency (MHz) 200 100 200 214 - 200 200

Quantization 16-bit 16-bit 16-bit 8-bit 8/4-bit 8-bit 8-bit
Strategy floating fixed fixed fixed fixed/log block floating floating

Top-1/Top-5 70.46/89.77 -/- -/- 67.72/88.06 70.19/89.81 68.31/- 70.05/89.68Accuracy (%)
DSP Used 1728 824 1518 780 - 1027 768

Throughput (GOPS) 202.42 229.55 715.9 84.3 (CONV) 878.11 760.83 1086.8
per DSP Throughput 0.117 0.279 0.472 0.444 - 0.741 1.42(GOPS/DSP)

Power (W) 10.81 9.4 - 3.5 7.2 9.18 9.42
Power Efficiency 18.72 24.42 - 24.1 72.8 82.88 115.4(GOPS/W)

maintaining comparable top-1/top-5 accuracy without any re-
training process. Finally, we also show the power efficiency
in Table VI, and our processor improves the power efficiency
by 39% – 5.16×.

4) Comparison with Previous Accelerators on YOLO: We
further compare the detection network YOLO [2], [41] with
prior accelerators [35], [40], [42], [43] and we use the tiny
version of the YOLO network. The comparison results are
shown in Table VII, where we also list the mean average
precision (mAP) loss of our quantized networks. Compared
with the full precision network, the mAP loss of quantized
tiny-yolo and tiny-yolo-v2 is 0.3% and 0.1%, respectively. The
hardware comparison with prior accelerators shows that our
processor is 20.1× and 49.7× higher in terms of throughput
for tiny-yolo and tiny-yolo-v2, respectively. Moreover, due to
the implementation of four 4-bit MACs within one DSP slice,
the per DSP throughput improves by 5× compared with prior
accelerators on average.

VI. RELATED WORK

Weight and Computation Reduction. CNNs are typically
over-parameterized, and extensive accelerator developers in
recent years focus on using CNN approximation algorithms,
including weight reduction, computation complexity reduc-
tion and quantization to accelerate CNN inference [44]. The
accelerator proposed in [45], [46] used Winograd algorithm
to reduce the number of multiplication in convolution, thus
reducing computation complexity. EIE [39], Cambricon-X [47]
and Cambricon-S [14] were the mainstreaming accelerators
that benefit from weight and computation complexity reduc-
tion techniques. However, the irregularity caused by these

algorithms degrades the parallelism and hardware efficiency
[48].

Quantization. Accelerators with quantization is another
concentration. XNOR Net [49] applied weights binarization
by quantizing weights into {-1, 1} with a scaling factor for
AlexNet. The lightweight YOLOv2 [50] was another binariza-
tion approach which focused on object detection CNN. Ac-
celerator with ternary representation, which added zero to the
binary set, was introduced to help improve the accuracy [51].
Although these accelerators achieve remarkable power and
storage saving, they both suffer from significant accuracy loss.
Moreover, they all need time-consuming re-training process
to compensate for the quantization error. 16-bit quantization
oriented accelerators, including floating-point and fixed-point
representations, solved the problem of accuracy loss [15],
[17], [18], [42]. However, the storage requirement is still
huge, and the per DSP throughput is extremely low (less than
0.5GOPS/DSP) because of the usage of 16-bit.

8-bit quantization makes a trade-off between storage and
accuracy. The accelerators [33], [35] optimized the compu-
tation patterns with 8-bit fixed-point quantization to improve
the performance for different CNNs. DNNBuilder [36] was
proposed to automatically build DNN accelerators to satisfy
the performance and power efficiency demands on embedded
and cloud FPGAs, while Cloud-DNN [52] was the framework
for mapping DNN models to cloud FPGAs. Block floating-
point scheme with 8-bit mantissa was used in [23] to ac-
celerate the inference of CNN while maintaining accuracy.
However, all these accelerators need 8-bit MAC to perform
convolution, leading to a low per DSP throughput (less than
0.8GOPS/DSP). A more aggressive method quantized the
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TABLE VII
COMPARISON WITH PRIOR ACCELERATORS ON YOLO. ”-” MEANS NO REPORTED RESULTS.

Ma, et.al. [42] Aristotle [43] Angle-Eye [35] Wai, et.al. [40] ours
Year 2017 2017 2018 2018 2019

Platform XC7V485T XC7020 XC7Z020 Cyclone V XC7K325T
Frequency (MHz) 143 214 - 117 200

Quantization Strategy 16-bit fixed 8-bit fixed 8-bit fixed 8-bit fixed 8-bit floating
Network tiny-yolo tiny-yolo tiny-yolo tiny-yolo-v2 tiny-yolo tiny-yolo-v2

mAP loss (%) - - - - 0.3 0.1
DSP Used 112 198 - 122 768

Throughput (GOPS) 48 36.5 62.9 21.6 987.2 1095.4
per DSP Throughput (GOPS/DSP) 0.429 0.184 - 0.177 1.29 1.43

small values of the weights into 4 bits and keeps the remaining
16 bits as full precision, by dividing the weights into the low-
precision and high-precision regions according to the values of
the weights [53]. HAQ [54] proposed a mixed precision quan-
tization approach with a trade-off between quantization policy
and hardware performance. However, both studies need time-
consuming re-training process to compensate for quantization
errors.

Different from all the above methods, the proposed LPFP
quantization scheme fully exploits the properties of weights
and activations, thus obtaining a comparable or better accuracy
for deep CNNs. Moreover, the LPFP quantization method
gets rid of the time-consuming re-training process that needs
labelled data and extra computing, because access to labelled
data can be difficult in practice as hardware and CNN algo-
rithms are often developed by different parties. Furthermore,
with the help of the LPFP quantization method, our processor
only needs 4-bit MACs, thus dramatically improving the per
DSP throughput. Overall, the proposed processor achieves
better performance on FPGA.

VII. CONCLUSION

We have proposed a low precision floating-point quantiza-
tion method, called LPFP, to reduce memory size and memory
access with negligible accuracy degradation (less than 0.5%
for top-1 and 0.3% for top-5 accuracy) for CNN interference.
LPFP does not need any re-training. Furthermore, we have
reduced the bit width for multiplication to 4-bit with com-
parable accuracy and implemented four 4-bit MACs within
one DSP slice in Xilinx Kintex 7 FPGA family. Experiments
using Xilinx KC705 platform and six typical CNN networks
show that we achieve an average throughput and per DSP
throughput of 1100.4 GOPS and 1.43 GOPS, respectively.
Moreover, the average throughput is 64.5× and 1.5× over
Intel i9 and existing accelerators, respectively. Particularly for
VGG16 and YOLO, we outperform six existing accelerators
in terms of average throughput by 3.5× and 27.5×, while
improving per DSP throughput by 4.1× and 5×, respectively.
To the best of our knowledge, this is the first in-depth work
that can simplify the multiplication to 4-bit and accommodate
four MACs in one DSP slice while maintaining comparable
top-1/top-5 accuracy without any re-training.
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