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ABSTRACT

Panoramic X-ray and Cone Beam Computed Tomography (CBCT) are two of the most general
imaging methods in digital dentistry. While CBCT can provide higher-dimension information, the
panoramic X-ray has the advantages of lower radiation dose and cost. Consequently, generating 3D
information of bony tissues from the X-ray that can reflect dental diseases is of great interest. This
technique can be even more helpful for developing areas where the CBCT is not always available
due to the lack of screening machines or high screening cost. In this paper, we present Oral-3D
to reconstruct the bone structure of oral cavity from a single panoramic X-ray image by taking
advantage of some prior knowledge in oral structure, which conventionally can only be obtained by
a 3D imaging method like CBCT. Specifically, we first train a generative network to back project
the 2D X-ray image into 3D space, then restore the bone structure by registering the generated 3D
image with the prior shape of the dental arch. To be noted, Oral-3D can restore both the density of
bony tissues and the curved mandible surface. Experimental results show that our framework can
reconstruct the 3D structure with significantly high quality. To the best of our knowledge, this is the
first work that explores 3D reconstruction from a 2D image in dental health.

1 Introduction

Oral diseases are the most common diseases in the world and can affect people’s health throughout their lifetime.
This problem is more serious in developing countries due to the limited resource of dental service and insuifficient
awareness of oral health. Some oral diseases, e.g., periodontitis, gingivitis, and dental plaque, can be directly inspected
and diagnosed by eyes for a well-trained dentist. However, some dental therapy methods, e.g., teeth implant/pulling,
orthodontics, and dental filling, usually require the assistance of radiology imaging to observe the interior bony tissues
of the oral cavity. Therefore, the imaging quality can significantly influence the accuracy of dental diagnosis, which
has indicated the importance of the imaging methods in dental healthcare.

Panoramic X-ray is one of the most popular imaging methods in digital dentistry. The imaging machine can take a
photo of all the teeth and most part of the mandible for the patient by moving the X-ray camera around the patient’s
head. It generates very little radiation as the exposure process only takes a few seconds, thus has been widely used in
many dental clinics. Another popular imaging method is CBCT, which develops from traditional CT but reconstructs
a 3D image for the oral cavity with divergent X-rays. Compared with panoramic X-ray, CBCT can provide a higher-
dimension picture and show more details of teeth and mandible. Also it is becoming a necessary examination for
endodontics, implantology, and orthodontics.

We summarize the characteristics of these two imaging methods in Table 2. Compared with panoramic X-ray, CBCT
can provide more information for diagnosis and surgery, but the price and radiation also significantly increase at the
same time. For example, CBCT generates 39.4× radiation and takes 3.7× of the price on average than panoramic
X-ray. These factors have limited the popularization of CBCT into many small dental clinics, even if it can provide
higher-dimension information over panoramic X-ray. This problem is more obvious in developing countries, where
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Table 1: A comparison of CBCT and panoramic X-ray on common dental disease.

CBCT Panoramic X-ray
Image Dimension 3D 2D
Imaging Cost [1] e 184.44 e 49.29
Radiation Dose [2] 58.9-1025.4 µSv 5.5-22.0 µSv
Diagnostic Accuracy [3] 94.8% 83.3%
Wisdom Tooth 3 3

Tooth Decay 3 3

Implant Planning 3 7

Orthodontics 3 7

Figure 1: An overview of Oral-3D can be seen in this picture. We first back project the panoramic image into 3D space
with a generative network, then we utilize the prior dental arch information to register the generated 3D image into a
curved plane to reconstruct the bone structure.

people are not willing to invest too much in dental healthcare. To solve this problem, we propose to reconstruct the
3D bone structure of oral cavity from a single panoramic X-ray image with the help of some prior knowledge. It can
enable dentists to inspect the patient’s teeth in a 3D view even if only panoramic X-ray images are available. We
believe this work can contribute to the dental healthcare by lowering the examination requirement.

Single-view reconstruction has been a hot topic in recent years with the fast development of deep learning. Typically,
the reconstruction models try to recover the shape and surface of the 3D object with a single-view image. They usually
require some prior knowledge to regularize the reconstruction result. Our framework follows a similar principle as
these works that take the shape of the dental arch as the prior information to constrain the oral shape. Additionally, as
we also intend to recover the interior information of the 3D object, this can also be taken as cross-modality problem
where a CT-like image is generated from an X-ray image.

We show an overview of our framework, named Oral-3D in Fig. 1, which is a two-step reconstruction work. In the first
step, we train a generative network to learn the non-learning mapping function that can back project the 2D panoramic
X-ray image (Image a) into 3D space, where the depth information of teeth and mandible can be learned automatically
from the paired 2D and 3D images. In the second step, we register this generated 3D image (Image b), which can
be seen as an embedding of the oral cavity into a curved plane, into the original shape to reconstruct the final bone
structure according to the prior knowledge in the dental arch. This prior knowledge effectively restricts the shape and
location of the bone structure and can be obtained from anytime of a CT scan of the corresponding patient or just
taken from an averaged shape of the training cases. The paired panoramic X-ray image and its corresponding 3D bone
structure are automatically generated from a CBCT dataset collected by a major stomatological hospital in China.
Experimental results show that Oral-3D can reconstruct the oral structure with high quality from a single panoramic
X-ray image and keep the density information at the same time. To summarize, we make the following contributions:

• We are the first to explore cross-modality transfer for dental imaging with deep learning, where the 3D bone
structure of oral cavity can be reconstructed from a single panoramic image and some prior knowledge.

• In addition to generating the 3D shape and surface of the bone structure, we also restore the density informa-
tion of bony tissues, which is of great help for dental diagnosis.

• We propose a registration method to embed a 3D image into a curved plane, which can significantly improve
the reconstruction quality compared with single-step methods.

• Our reconstruction results can clearly reflect the abnormal dental structure, e.g., missing teeth and wisdom
teeth, in the 3D space. This has indicated the practicability of our method in clinical applications.

• We provide an automatic method to generate paired images for the panoramic X-ray image and the corre-
sponding bone structure from a CBCT image, which can be explored in future research.
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Figure 2: We show some examples of cross-modality transfer for same-dimension images: CT → MRI [9], Retina
→ Fundus [11], and PET → MRI [12]. These works can be seen as a pix2pix framework and the source image
usually contains more information than the target image. Compared with these work, our problem for oral cavity
reconstruction is more challenging as we try to recover 3D information from a 2D image.

2 Related Work

2.1 Deep Learning for Oral Health

Deep learning has shown promising performance in the automated medical assistance system for healthcare by learning
latent features from large amounts of datasets. It also plays an increasingly important role for oral health by improving
dental examination efficiency with intelligent solutions. For example, [4] proposes an automatic method for instance-
level segmentation and identification of teeth in the CBCT image. [5] trains a deep neural network to detect and
diagnose dental caries from periapical radiographic images. [6] utilizes a U-Net structure to enhance the resolution
of 2D CBCT slices. [7] designs a classification model for red auto-fluorescence plaque images to assist in detecting
dental caries and gum diseases. [8] uses transfer learning to classify three different oral diseases for X-ray images.
However, these methods have ignored the availability of imaging methods in dental healthcare, which is a practical
problem in many developing countries due to the limited income and high cost of the imaging equipment. Therefore,
we intend to improve oral healthcare service in a different view by lowering the examination requirement, where the
3D bone structure of oral cavity can be reconstructed without a CBCT machine.

2.2 Cross-Modality Transfer in Medical Imaging

The target of cross-modality transfer is to find a non-linear relationship between medical images in different modalities.
It can help reduce the extra acquisition time and additional radiation in medical examination or provide additional
training samples without repetitive annotation work to augment the dataset. Most works take this as a pix2pix problem,
where the layout and the structure of objects are retained but the color distribution is changed when transforming the
source image into a target space. For example, [9] utilizes CycleGAN [10] with unpaired data to synthesis CT slices
from MRI slices for radiologists to observe abnormal anatomical lesions. [11] takes the vessel tree of eyes as a
condition to synthesis new images for fundus photography. [12] proposes a generation network to produce realistic
structural MR images from florbetapir PET images. Examples of cross-modality transfer are shown in Fig. 2.

However, only a few works have discussed the cross-modality transfer problem from a lower-dimension image to
a higher-dimension one, which is more challenging as the model needs to infer the latent information in the lower-
dimension image. To the best of our knowledge, there are only two papers that have done similar works with ours
in medical imaging. The first one [13] uses an encoder-decoder network to reconstruct 3D skull volumes of 175
mammalian species from 2D cranial X-rays, but the result is subject to too much ambiguity. To improve the visual
quality, [14] utilizes biplanar X-rays to extract 3D anatomical structures of body CT with adversarial training and
reconstruction constraints. Differently, our framework improves the reconstruction quality with prior knowledge,
where the back projection module only needs to learn depth information and the registration module is responsible
for embedding the generated 3D image into a curved plane. We show that this scheme can significantly improve the
reconstruction quality.

2.3 3D Reconstruction from 2D Image

Recent work of 3D Reconstruction from the 2D image can be summarized into two categories according to the views
provided by the 2D image: multi-view reconstruction and single-view reconstruction. For the first one, multi-view
images can provide shape information of the reconstruction object from multiple angles, thus requiring little prior
knowledge as a restriction. For example, [15] computes the most probable 3D shape that gives rise to the observed
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Figure 3: Our framework consists of a back-projection module to transform the 2D panoramic image into 3D space
and a registration module to reconstruct the 3D structure of oral cavity.

color information from a series of calibrated 2D images. [16] learns the mapping function from arbitrary viewpoints
to a 3D occupancy grid with a 3D recurrent neural network. As a comparison, reconstruction from a single-view
image usually requires additional information, e.g., prior shape, to inference the object shape. As such, [17] proposes
a unified framework trained with a small amount of pose-annotated images to reconstruct a 3D object. [18] takes the
adversarially learned shape priors as a regularizer to penalize the reconstruction model. [19] inferences the 3D layout
hypotheses of a room by geometric reasoning from the single spherical panorama before reconstruction. Specifically,
as the panoramic image can be seen as taking a photo of an object with a moving camera, our work should belong to
the second type. Following a similar way with models in single-view reconstruction, we takes advantage of the dental
arch shape as the prior knowledge to constraint the reconstruction result and alleviate the miss-registration.

3 Method

We show the detailed structure of Oral-3D in Fig. 3, which consists of a back-projection module and a registration
module. The back-projection module is based on GAN, where the generator is trained to back project the 2D panoramic
image into 3D space. The registration module takes in the generated 3D image (Image c) and the prior knowledge of
the dental arch (Image e) to reconstruct the 3D oral structure (Image h).
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Figure 4: We show the two kinds of dense blocks for the generator in this picture, where Dense A is responsible for
expanding depth information and Dense B fuses and forwards this information to the 3D output.

3.1 Back-Projection Module

GANs have proved to be an effective model to learn latent data distribution by training the generator G and the
discriminator D in an adversarial way. The generator is expected to output xfake that looks similar with the real
image xreal from a random vector z sampled from a prior distribution p(z). Also, the discriminator can be seen as a
binary classifier that tries to distinguish xfake and xreal. This min-max game can be expressed mathematically as in
(1), where the generator learns to approximate the real data distribution Preal(x) during the optimization process.

min
G

max
D

V (G,D) = Ex∼Preal
[logD(x)] + Ez∼Pnoise

[log(1−D(G(z)))] (1)

Since we intend to generate the consistent 3D content from the semantic information of the panoramic X-ray image,
we utilize conditional GANs [20] to learn the cross-dimension mapping for the generator. To improve the generation
quality and guarantee the stable training process, we use LSGAN [21] as the keystone to train the generator and
discriminator. To maintain the structural consistency of the input and generation result, we also introduce the mean
square error of the generation as the reconstruction loss to the generator. Then the optimization problem in (1) changes
to:

D∗ =argmin
D

Ey

[
(D(y)− 1)2

]
+ Ex

[
D(G(x))2

]
G∗ =argmin

G
λ1 · Ex

[
D(G(x))− 1)2

]
+ λ2 · Ex,y

[
(y −G(x))2

]
,

(2)

where x is the panoramic image and y is the expanded 3D image.

Generator The objective of the generator is to learning a mapping function to transfer a 2D image into 3D space.
Then the problem comes to finding a non-linear generator G denoted as:

G : I2DH×W → I3DH×W×D, (3)

where I2D is the panoramic image with a size of H ×W and I3D is the expanded 3D image with a size of
H ×W ×D. In this problem, the pixel values of the panoramic X-ray image can reflect the absorption of radiation,
thus making it reasonable to infer the depth information from the 2D image. Therefore, we utilize a 2D encoder-
decoder network to learn the cross-dimension relationship, where the 3D information of the teeth are embedded into
feature maps. As shown in Fig. 3, the encoding network decreases the resolution of features but increases the number
of feature channels, while the decoding network increases the resolution of features and fuses them to reconstruct the
3D object. We utilize a 5× 5 convolution with stride = 2 at the top of the generator to save memory and add a tanh
layer at the end to restrict the generated voxel value to (−1, 1).

Dense Block Dense connection [22] has proved to be an efficient learning structure in deep neural networks. We
thus embed dense blocks in the generation network to efficiently utilize the information from 2D panoramic X-ray
images. Note that the dense blocks play two different roles in the encoder and decoder. In the encoding network, the
dense layer learns to explore the depth information by doubling the channel number of feature maps. As shown in Fig.
4, for each Dense A in the encoding network with k-channel input feature maps, we set the dense block with three
consecutive conv − norm− relu layers with a growth rate of k. The Dense A layer outputs 2k-channel features in
the end to expand the depth information over the input. In the decoding network, the dense block fuses the features
up-sampled from the upper layer and the ones passed from the skip-connections. TheDense B layer outputs the same
number of channels as the input to keep and forward the depth information.

Up-sampling For the up-sampling block in the decoding network of our generator, we utilize 3 × 3 transpose con-
volution with stride = 2 to increase the resolution of feature maps. For the V oxel up layer, we double the feature
number at the same time to keep the shape of reconstruction results consistent with the ground truth.

5
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Discriminator The discriminator can help the generator improve the generation quality by improving the classifica-
tion ability for real and fake images. In our model, we adopt patch discriminator introduced by [10] to improve the
generation quality of tooth edges by learning high-frequency structures in the flattened 3D image. We set the patch
size as 70× 70× 70 and follow a similar structure in [10] but with 3D convolution. As shown in the back-projection
module in Fig. 3, we first random sample patches from both the real and generated images to be the input of the
discriminator. Then we use three successive conv − norm− relu layers with kernel = 4, stride = 2, followed by a
conv − norm− relu layer with kernel = 4, stride = 1, and a conv − sigmoid layer with kernel = 4, stride = 1
in the end to predict the probability of the samples belonging to the real image.

3.2 Registration Module

After obtaining the expanded 3D image from the generator, we register this flattened bone structure into a curved plane
to reconstruct the final bone structure with the assistance of the prior knowledge about the dental arch. As shown in
the registration module in Fig. 3, the whole process takes two steps. First, we cut the generated 3D image (Image c)
into sagittal slices and embed them to the dental arch curve. This can be taken as a placement game about how to even
put the sticks along a curve. To obtain this, we sample a series of points along the dental curve with equal distance
and put the slices on these points in the normal direction (Image f ). Second, we interpolate the voxels between the
neighboring slices to output a smooth 3D structure (Image h). For computation convenience, we combine these steps
together and show it in Algorithm 1, where we assume that the generated 3D image and the bone model has the same
height of H .

Algorithm 1 Embedding and Interpolation
1: function REGISTER(Slices,W3D, D3D, curve)
2: W,H,D ← SHAPE(Slices)
3: OralImage← ZEROS(W3D, H,D3D)
4: SamplePoints← SAMPLE(curve)
5: for i = 0; i < W3D; i++ do
6: for j = 0; j < D3D; j ++ do
7: id, dist← MIN DISTANCE((i, j), SamplePoints)
8: OralImage[i :, j]← INTERPOLATE(Slices[id, :, :], dist)
9: end for

10: end for
11: return OralImage
12: end function

3.3 Generating Paired Images

In order to avoid the additional radiation for patients, we propose an automatic method to generate the paired images
for panoramic X-ray and 3D bone structure of oral cavity from a CBCT image. The whole process is shown in Fig. 5.

Oral Structure Generation: To obtain the 3D bone structure from the CBCT image, we use global convex segmen-
tation [23] to segment the bony tissues, which treats the bone segmentation as a minimization problem with a unique
minimum. We use the Split Bergman method [24] to solve this and generate a binary mask of the bone structure. In
the end, we apply this mask to the CBCT image to obtain the ground truth for the 3D structure.

Panoramic X-ray Generation: We follow the Beer-Lambert absorption-only model to synthesis the panoramic
X-ray image from the CBCT image. Different from other methods that simulate the X-ray images from CT with
parallel X-rays sent from a plane, we do the projection over a curved plane parallel to the dental arch with a similar
method introduced by [25]. As shown in Fig. 5, we first obtain the dental arch mask (Image c) by maximum intensity
projection (MIP) over the axial slices of CBCT (Image a). Then we skeletonize the binary mask and use a cubic spline
to fit the skeleton image (Image d) to obtain the dental arch curve (the red line in Image e) and estimate the arch
thickness. Finally, we sample W +1 points along the arch curve with equal curve distance to transfer the curved plane
into a multiple-fold plane for projection. Meanwhile, these sampled points and the curved slices parallel to the dental
curve are kept as the prior knowledge of the dental arch and the ground truth of the expanded 3D image. The whole
generation process can be seen from Image a - Image f in Fig. 5.

6



A PREPRINT - MARCH 27, 2020

Figure 5: An overview of generating 3D bone structures of oral cavity and 2D panoramic images from CBCT is shown
in this picture. The 3D oral structure is obtained by segmentation on CBCT with a global convex method. The 2D
panoramic image is synthesized by projection over the estimated dental arch. In Image (e), the red line indicates the
dental arch curve and the blue line and green line show the upper bound and lower bound of the projection space from
an axial view.

4 Experiment

4.1 Dataset

The clinical dental CBCT images of 72 patients are collected from a major stomatological hospital in China. The
images are scanned by NewTom VG, Italy, with a voxel size of 0.125mm. These images are further cropped by the
radiologists to keep only the oral area. For convenience, we down-sample these images into a size of 288× 256× 160
and normalize them into a range of (−1, 1). Furthermore, we split the dataset with a ratio of 3 : 1 : 1 for training,
validation, and testing. The panoramic X-ray image and the 3D bone structure of oral cavity are both automatically
obtained from this CBCT dataset.

4.2 Evaluation Metrics

PSNR: Peak signal-to-noise ratio (PSNR) is often used to measure the difference between two signals. Compared
with mean squared error, PSNR can be normalized by the signal range and expressed in terms of the logarithmic
decibel scale. We take this to measure the density recovery of our models.

IOU: Intersection over union is a fundamental standard to evaluate the reconstructed shape. The binary mask of the
reconstructed bone structure can be obtained by setting a threshold (e.g.,−0.5 in our experiment) to the reconstruction
results.

SSIM: We also use the structure similarity index (SSIM) [26] as a key criterion of the reconstruction quality. Com-
pared with the other two methods, SSIM considers the brightness, contrast and structure information at the same time
and can match better the subjective evaluation of humans. It is widely used in many image transfer applications and
can effectively indicate the reconstruction quality.

4.3 Training

We train the generator and the discriminator of the back-projection module by following a similar schema as in [21].
We utilize the Adam optimizer [27] with a learning rate of 1× 10−3 and a batch size of 1. We use the validation data
as the stop criterion and the model converges after 300 epochs. To show the influence brought by the different prior
knowledge, we also calculate an averaged shape of the dental arch as another type of prior information for comparison,
which is marked as Oral-3D (Avg) in the following paper.
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Figure 6: We show examples of reconstruction for a healthy cavity in this picture, where we can see that the surface
of teeth and mandible can be clearly seen from multiple views.

4.4 Reconstruction Results

We show the reconstruction results under three scenes of oral cavity: healthy oral cavity, oral cavity with missing teeth,
oral cavity with redundant teeth. The last two situations are two of the most general problem people can meet during
a dental examination. These abnormalities can also indicate if our model is effective. Additionally, we give an insight
view to see the photos sliced by different directions to observe the restored density information, which is an important
inference for dental diagnosis.

Healthy Oral Cavity We first reconstruct the 3D structure for the healthy cases and show the results in Fig. 6. We
can see that the structure surface can be seen clearly from different views.

Oral Cavity with Missing Teeth Then we reconstruct the cases with missing teeth to prove that our model is not
just over-fitting. As shown in Fig. 7, the missing structures can be accurately reflected in the 3D structure.

Oral Cavity with Redundant Teeth Wisdom teeth usually grow in a vertical direction to the other teeth and are
the most common redundant teeth for humans. As shown in Fig. 8, these redundant teeth can also be found in the
reconstructed bone structure.

Density Information As our model can also indicate the density information of the bony tissues inside the oral
cavity, we show some slices of our reconstructed results in Fig. 9. It is obvious that our framework can recover the
density information with high quality, which is of great help for dental diagnosis.

4.5 Comparison with Baseline Models

To show the effectiveness of our method, we compare Oral-3D with several general models as baselines, such as the
Residual CNN introduced by [13] and a condition GAN that directly back projects the panoramic X-ray image into
the 3D bone structure. These networks are trained with the settings as Oral-3D except for the utilization of the prior
knowledge in dental arch. We compare the reconstruction results from three views as following:

Quantitative Comparison We first compare the results of different methods by the metrics in Section 4.2. As
shown in Table. 2, Oral-3D with individual dental arch information is significantly better than those without any prior
knowledge, such as Residual CNN, where the model needs to learn both the shape and location information at the
same time.

Qualitative Comparison of Restored Shape We first show the 3D bone structure in Fig. 10 from views of center,
left, right, and back. By comparing results generated by different methods, we can find that Oral-3D can obtain a
much clearer surface than the single-stage model. That is quite reasonable as our generation network only needs to

8
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Figure 7: We mark the missing teeth in this picture with the bounding box, where we can see this information is also
included in the reconstructed oral cavity.

Figure 8: Reconstruction results for patients with wisdom teeth can be seen in this picture. We mark the wisdom teeth
with the bounding box. And we can also these redundant teeth in the 3D structure.

Table 2: Evaluation on 3D Reconstruction

Method Prior Info IOU (%) PSNR (dB) SSIM (%)
Residual CNN No 50.71 15.54 67.21

Dense CNN No 47.90 14.80 64.93
GAN No 49.01 15.45 55.17

Oral-3D Avg 52.67 15.22 70.62
Oral-3D Yes 63.77 17.36 75.54
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Figure 9: The reconstructed bone structure can restore the density information at the same time. Therefore, we can
distinguish different bony tissues inside the oral cavity. This would provide useful information for dentists to find
abnormality for each teeth.

learn the depth information. Specifically, we can see that there is a missing tooth in the upper right of the mouth in
the ground truth. This information can be seen in both Oral-3D and Oral-3D (Avg), but is not visible in the generation
results of other methods. This can directly indicate the effectiveness of our reconstruction method.

Qualitative Comparison of Restored Density We also compare the restored density information by showing axial
slices in Fig. 11, where we can see that our method can predict a much better result than these single-stage methods.
By comparing Oral-3D with different prior information, we can also see that the primary contribution of the individual
dental arch knowledge is to locate the position and restrict the shape of oral cavity.

10
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Figure 10: Comparison of bone structures generated by different methods.

Figure 11: Comparison of axial slices generated by different methods.

11
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5 Conclusion

In this paper, we propose a two-step framework to reconstruct the 3D bone structure of oral cavity from a single 2D
panoramic X-ray image, where an averaged or individual shape information of the dental arch is provided as prior
knowledge. We first utilize a generative model to back project the 2D image into 3D space, then take the generated 3D
image for registration to reconstruct the 3D bone structure. Experimental results show that our model can restore both
the shape and the density information with much higher quality than other methods. We hope this work can contribute
to the oral healthcare from a novel attitude.
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