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Phoenix: A Low-Precision Floating-Point
Quantization Oriented Architecture for

Convolutional Neural Networks
Chen Wu, Mingyu Wang, Xiayu Li, Jicheng Lu, Kun Wang, Lei He

Abstract—Convolutional neural networks (CNNs) achieve
state-of-the-art performance at the cost of becoming deeper
and larger. Although quantization (both fixed-point and floating-
point) has proven effective for reducing storage and memory
access, two challenges – 1) accuracy loss caused by quantization
without calibration, fine-tuning or re-training for deep CNNs and
2) hardware inefficiency caused by floating-point quantization –
prevent processors from completely leveraging the benefits. In
this paper, we propose a low-precision floating-point quantiza-
tion oriented processor, named Phoenix, to address the above
challenges. We primarily have three key observations: 1) 8-bit
floating-point quantization incurs less error than 8-bit fixed-point
quantization; 2) without using any calibration, fine-tuning or re-
training techniques, normalization before quantization further
reduces accuracy degradation; 3) 8-bit floating-point multiplier
achieves higher hardware efficiency than 8-bit fixed-point multi-
plier if the full-precision product is applied. Based on these key
observations, we propose a normalization-oriented 8-bit floating-
point quantization method to reduce storage and memory access
with negligible accuracy loss (within 0.5%/0.3% for top-1/top-5
accuracy, respectively). We further design a hardware processor
to address the hardware inefficiency caused by floating-point
multiplier. Compared with a state-of-the-art accelerator, Phoenix
is 3.32× and 7.45× better in performance with the same core
area for AlexNet and VGG16, respectively.

Index Terms—low precision floating-point, deep learning, CNN,
processor, quantization.

I. INTRODUCTION

CONVOLUTIONAL neural networks and deep neural net-
works have demonstrated a breakthrough in performance

for a broad range of applications, including object recognition
[1], object detection [2] and speech recognition [3]. The advan-
tages mainly come from the huge computational complexity
and huge amount of data. This motivates researchers in both
academia and industry to focus on accelerating CNNs by
using CPU/GPU clusters [4], FPGAs [5] and ASICs [6].
Among them, customized accelerators/processors on FPGAs
and ASICs have shown more promising throughput and energy
efficiency than traditional CPU/GPU clusters [7]–[10].

Meanwhile, algorithm researchers keep on designing larger
and deeper CNNs to improve performance in a broader range
of scenarios. Such networks use larger amount of parameters,
e.g. AlexNet [11] in 2012 has 249.51MB parameters, while
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VGG-16 [12] in 2014 has 553.43MB parameters. The great
quantities of parameters lead to a big challenge for communi-
cation between off-chip and on-chip memory because of band-
width constraints. On the other hand, algorithm developers also
focus on reducing parameters while maintaining performance
by introducing residual [13] or inception blocks [14], [15].
They successfully decrease the parameter size dramatically,
e.g., from 553.43MB in VGG16 to 68.63MB in DenseNet201
[16]. However, the number of convolutional layers or fully-
connected layers increases significantly from 13 to 201, mak-
ing a deeper CNN. Such deep CNNs render approximate
computing (e.g., quantization) for CNNs more difficult, as
we need to balance the approximation error imposed by more
layers [17].

Progress has been made to alleviate bandwidth constraints
by reducing the amount of parameters. Quantization, which
approximates full precision parameters with low-precision
numbers, has emerged as an efficient solution among various
techniques. 8-bit fixed-point quantization is one of the most
commonly used techniques [6], [23], [24], which results in
a 4× data reduction. More aggressive studies tried to further
reduce the data size by introducing binary neural network [25]
or ternary neural network [26]. Meanwhile, the authors in [18],
[21], [27], [28] focused on maintaining comparable accuracy
for deeper CNNs during quantization, by using calibration,
fine-tuning or re-training techniques with training data after
quantization.

However, quantization with calibration, fine-tuning or re-
training requires extra computing and training data which
could be difficult for hardware developers. Xilinx in [21]
proposed a low-precision floating-point quantization method
with a single inference batch for calibration. They only proved
their effectiveness for slim CNNs, which is not enough because
deeper CNNs, e.g., ResNet152 [13] and DenseNet201 [16], are
more popular to gain higher performance in different applica-
tions. Moreover, Xilinx did not present any hardware for their
quantization method. This is because floating-point multiply-
accumulators (MACs) have lower hardware efficiency than
fixed-point ones. This is another challenge for accelerator
design.

In this paper, we propose a cooperative software/hardware
approach to overcome the above challenges efficiently. Ini-
tially, we observe that non-uniform quantization for both
weights and activations (we use activations to represent the
outputs of a layer) incurs less quantization error compared
with uniform quantization. At the same time, applying nor-
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TABLE I
COMPARISON OF EXISTING QUANTIZATION METHODS AND CORRESPONDING ACCELERATORS.

Slim Medium Deep Hardware Note
Nvidia [18]

√ √ √
GPU Fixed-point, extra cost for calibration

OLAccel [19]
√ √ √

Customized Accelerator Fixed-point, extra cost for re-training
ARM [20]

√ √
x CPU Fixed-point and floating-point mixed, no hardware support

Xilinx [21]
√ √

x CPU No hardware support, extra cost for calibration
BFP [22]

√ √
x Customized Processor Block floating-point

Phoenix
√ √ √

Customized Processor Floating-point, no calibration, fine-tuning nor re-training

malization on activations before quantization can reduce ac-
curacy loss without any calibration, fine-tuning or re-training
processes. Moreover, 8-bit floating-point multiplier achieves
higher hardware efficiency than 8-bit fixed-point one when
maintaining full precision results after multiplication. There-
fore, we propose a normalization-oriented 8-bit floating-point
quantizer to reduce the data size with negligible accuracy
loss. Our proposed quantizer works for deep CNNs (more
than 100 convolutional/fully-connected layers). On average,
the top-1 accuracy loss is within 0.5%, while the state-of-
the-art work [28] which can reach to such deep CNNs has a
top-1 accuracy loss about 1% with fine-tuning. After reduc-
ing the memory and bandwidth requirements by using 8-bit
floating-point quantization method, we design a floating-point
based hardware processor, named Phoenix, to further address
the problem of hardware efficiency caused by floating-point
MACs. We maintain full precision for intermediate results after
8-bit floating-point multiplier, which saves 8.14× area com-
pared with the 8-bit fixed-point multiplier. Compared with a
state-of-the-art accelerator [29], Phoenix is 3.32× and 7.45×
better for AlexNet and VGG16 in terms of performance when
considering the same core area at TSMC 65nm technology,
respectively. Phoenix also achieves 151× better in terms of
energy compared with Nvidia TITAN Xp GPU with single
image inference.

Our main contributions can be summarized as follows: 1)
We make the key observations that normalization and non-
uniform quantization can help reduce the quantization error
even in deep CNNs. 2) Based on the observations, we pro-
pose a normalization-oriented 8-bit floating-point quantization
method that dramatically reduces the parameter size with
negligible accuracy loss for deep CNNs. 3) We further design
a floating-point oriented hardware processor, named Phoenix,
which is placed and routed in TSMC 28nm technology,
to solve the hardware inefficiency caused by floating-point
MACs.

II. BACKGROUND AND MOTIVATION

A. Background

1) CNNs: CNNs are used to classify or recognize objects
by passing the inputs through multiple types of layers. In
each layer, multiple neurons are constructed to process dif-
ferent inputs and pass the outputs to the next layer through
connections, which store the weights for the network. Based
on different processing procedures, the layers are typically
divided into convolutional, pooling, activation, normalization,
fully-connected, residual and inception layers. Among them,

convolutional/fully-connected layers consume most portions
of computation while fully-connected layers require largest
memory to store weights. According to this, we divide the
size of CNNs into three categories with respect to the number
of convolutional/fully-connected layers: slim for less than 50
layers, medium for 50 to 100 layers, and deep for more than
100 layers (as shown in Table II where we report the detailed
network information).

2) Over Parameterization in Neural Networks: Modern
CNNs show dominant performance advantages in various
application domains by enlarging the network architecture.
However, such technique results in a heavy burden for memory
capacity, communication bandwidth, computation and com-
munication energy. Existing work tried to overcome such
challenges, including algorithm-level techniques (e.g., dropout
[30], low-precision training [31], [32]) and architecture-level
techniques (e.g., approximate computing [33], low-precision
operation [34], [35]). Among them, quantization, one of the
approximate computing techniques, turns out to be effective.
8-bit fixed-point quantization is widely used by FPGA or
ASIC for slim and medium CNNs [36]–[39]. Recently, it has
advanced to deep CNNs, e.g., ResNet101 on GPU for negli-
gible accuracy loss with calibration [18]. 8-bit floating-point
quantization still stays in the algorithm-level optimization and
can apply only to medium CNNs. More aggressively, binary
neural and ternary neural networks are proposed to further
reduce memory, bandwidth and energy but at the cost of a
larger accuracy loss [40]–[42].

3) 8-bit Floating-Point: Similar to the definition of 32-bit
floating-point from the IEEE-754 standard [43], the binary
representation of 8-bit floating-point number comprises sign,
mantissa and exponent in order. The decimal value of 8-bit
floating-point number is then calculated by:

Vdec = (−1)S × 1.M × 2E−bias, (1)

where Vdec is the value in decimal, S,M and E are all
unsigned values and denote the sign, mantissa and exponent,
respectively. For bias in Eq. (1), it is introduced for both
positive and negative exponents as

bias = 2Ew−1 − 1, (2)

where Ew is the data width of E. The data widths for M and
E are not fixed for 8-bit floating-point and we will emulate
all combinations. In the later sections, we use the term MaEb
to indicate different combinations, where a and b indicate the
bit width of M and E, respectively, e.g., M3E4 means the
mantissa is 3 bits while the exponent is 4 bits.
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Fig. 1. Quantization error compared among floating-point and fixed-point
quantizers with/without normalization (w: with normalization, o: without
normalization).

There are three special definitions in IEEE-754 standard.
The first is subnormal numbers when E = 0, and Eq. (1) is
modified to:

Vdec = (−1)S × 0.M × 21−bias. (3)

Then, Infinity (Inf) and Not a Number (NaN) are the other
two special cases, but not used in our work. This is because
our saturation scheme saturates large numbers to the maximal
number as illustrated in detail in Section III-A.

B. Motivation

1) Non-uniform quantizer: Non-uniform quantizer has been
proven more accurate than uniform quantizer when the in-
puts follow the non-uniform distributions, such as Gaussian,
Laplacian, and Gamma distributions [44]–[46]. Although the
weights and activations in a CNN are more likely to follow
a non-uniform distribution, few efforts have been done to
explore non-uniform quantizer for CNNs. Uniform quantizers,
e.g., fixed-point quantizers, are exploited instead on both
CPU/GPU [18], [47] and customized accelerators [39], [48],
[49] because of their hardware efficiency. A few researchers
recently support non-uniform quantizer [19]–[22]. However,
they either require notably extra cost to compensate for
quantization error or fail to have efficient hardware, as shown
in Table I. Particularly, the work in [18] first reached deep
CNNs, e.g., ResNet101, with 8-bit fixed-point quantization
by using calibration to compensate for quantization error.
OLAccel [19] divided weights and activations into the low-
precision region (97%) and high-precision region (3%). The
data in low-precision region were then quantized to 4 bits
while the data in high-precision region remained full precision.
Re-training is required in order to maintain accuracy, otherwise
the proportion of high-precision region must be increased,
which leads to higher cost on hardware implementation. ARM
[20] proposed a mixed quantizer, which used floating-point to
represent weights and fixed-point to approximate activations.
However, their approach remains in medium CNNs and lacks
hardware support. Recently, Xilinx [21] developed the first
low-precision floating-point quantization method. However,
this approach needs to calibrate with an extra inference batch
to maintain accuracy, and only slim and medium CNNs,
e.g., VGG16 and ResNet50, are validated. Moreover, the
performance of running inference on a network is even worse
than that of a full-precision network due to lack of hardware

support. Block floating-point [22] divided data into different
data blocks, in which the data had different mantissas and
a shared exponent. However, this approach was only vali-
dated for medium CNNs. To conclude, existing quantization
algorithms and corresponding architectures cannot completely
benefit from non-uniform quantizers.

2) Observation: Previous quantization methods ignore the
distribution properties of weights and activations. We fully
analyze the distributions of weights and activations in different
CNNs, and have two key observations: (1) A non-uniform
quantizer fits weights and activations better than uniform
quantizer as the weights and activations are more likely
to follow Gaussian distributions; (2) Normalizing activations
before quantization can further reduce quantization error. We
select four representative layers – fc6 in AlexNet, conv1
in VGG16, conv6 in ResNet50 and conv4 in ResNet152 as
driving examples. The quantization errors caused by 8-bit
floating-point and 8-bit fixed-point quantizers with/without
normalization are depicted in Figure 1. We normalize the
quantization error of all the cases with respect to the error
caused by 8-bit floating-point quantizer with normalization.
As can be seen from Figure 1, 8-bit floating-point quantizer
with normalization incurs the lowest quantization error among
all the four cases. Fixed-point quantizer with/without normal-
ization causes 1.50×/1.54× larger quantization error than 8-
bit floating-point quantizer on average, respectively. In addi-
tion, with normalization, 8-bit floating-point and fixed-point
quantizers both incur 1.3× less error. More detailed results
about classification accuracy for CNNs will be illustrated in
Subsection III-C.

As for the hardware implementation, we evaluate the
hardware efficiency of 8-bit floating-point and 8-bit fixed-
point multipliers by implementing them with Verilog and
synthesizing with Synopsys Design Compiler (DC). We get
another key observation that if we keep full precision for
the intermediate results after multiplication, 8-bit floating-
point multiplier consumes less area than 8-bit fixed-point
multiplier. For instance, 8-bit floating-point multiplier with
M4E3 consumes only 12.3% area of the 8-bit fixed-point
multiplier. This is because M4E3 only needs a 5-bit unsigned
fixed-point multiplier and a 3-bit unsigned fixed-point adder.
The area savings are more significant for 8-bit floating-point
multipliers with less mantissa bits (as shown in Figure 11). In
short, one can design a hardware efficient processor with 8-
bit floating-point multiplier, and maintain accuracy at the same
time by using 8-bit floating-point quantizer with normalization.

III. QUANTIZED NEURAL NETWORK

In this section, we present the details of our proposed
normalization-based 8-bit floating-point quantization method,
including quantization process, quantization results and nor-
malization analysis.

A. Quantization Process

Instead of quantizing the network directly, our quantization
method is divided into three steps: normalization, merge nor-
malization parameters, and quantization, as shown in Figure 2.
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Fig. 2. Flow of 8-bit floating-point quantization.

1) Normalization: As illustrated in Subsection II-B, nor-
malizing activations can reduce quantization error. Therefore,
we first normalize activations based on the inference results on
the original network. The normalization method is defined as
(we exploit other normalization methods in Subsection III-C)

NORM Om
i =

Om
i√

E((Om)2)
, (4)

where Om
i and NORM Om

i indicate the ith activation before
and after normalization for layer m, respectively; E((Om)2)
is the second moment of the activations, expressed as

E((Om)2) =
1

N

N−1∑
j=0

(Om
j )2, (5)

where Nm denotes the total number of activations of layer m
with Nm = OHm×OWm×OCm, OHm, OWm and OCm

being the height, width and channel number of the output
layer, respectively.

2) Merge Normalization Parameters: As normalization is
utilized to reduce quantization error in our proposed approach,
it does not incur any accuracy loss. Therefore, we merge
all the normalization parameters into the parameters of each
layer, as shown in Figure 3(a). As can be seen in Figure 3(a),
denormalization is first applied to the normalized outputs of
layer m to make sure that normalization for layer m never
incurs accuracy loss. After the operation ( e.g., convolution,
pooling, activation) of layer m + 1, the outputs need to be
normalized in order to reduce quantization error. As both the
denormalization and normalization procedures are linear, they
can be merged to the parameters of layer m + 1, as marked
with dashed line in Figure 3(a). To clearly explain the merging
procedure, we use convolutional and fully-connected layers as
driving examples. In the m-th convolutional layer or fully-
connected layer, output neurons are calculated as

Om =Wm · Im + bm, (6)

where Wm, Im and bm denote the weight matrix, input matrix
and bias vector for layer m, respectively. Since the outputs of
layer m are normalized with Eq. (4) and fed as the inputs
of layer m+1, the denormalization process can be applied to
the weights of layer m+ 1 as follows:

DE Wm+1 =Wm+1 ×
√
E((Om)2), (7)

where DE Wm+1 means the denormalized weights of layer
m+1. In order to simplify the calculation of normalization for
layer m+1, we also merge the normalization into the weights
of layer m+ 1, formulated as

M Wm+1 = DE Wm+1/
√
E((Om+1)2) (8a)

M bm+1 = b/
√
E((Om+1)2), (8b)
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Fig. 3. (a) Flow of merging normalization parameters. (b) Simplified
calculation process after merging all the normalization parameters.

where M Wm+1 and M bm+1 are the weights and biases of
layer m+1 with both denormalization and normalization. After
merging denormalization and normalization into the weights
and biases, we can get the normalized outputs with a simplified
calculation process, as shown in Figure 3(b).

3) Quantization: 8-bit float point quantization is then ap-
plied to the activations and weights of the normalized network
to save storage, and it is illustrated as follows:

Vfp8 = round(Vfp32 × 2h s,−MAXfp8,MAXfp8), (9)

where Vfp8 and Vfp32 represent the 8-bit floating-point value
and 32-bit floating-point value, respectively; MAXfp8 indi-
cates the maximal number which can be represented with 8-bit
floating-point, and h s is the scaling factor to fit the data into
the dynamic range of 8-bit floating-point data representation.
The round function in Eq. (9) rounds the data to the nearest
value with saturation considered, formulated as

round(x,MIN,MAX) =


MIN x <=MIN

MAX x >=MAX

round(x) otherwise
,

(10)
where MIN and MAX are the minimal and maximal values,
respectively.

During the quantization process, our aim is to find the
optimal scaling factor to minimize the mean square error
(MSE) compared with the full precision results, as illus-
trated by the pseudo-code in Algorithm 1. In our proposed
quantization method, both the weights and activations are
quantized. Since all the activations are normalized, we can set
the scaling factor h s the same for all the layers, which also
simplifies the architecture design, especially for residual and
inception layers. In the residual layer, element-wise addition
are performed to the outputs of two previous layers, while in
the inception layer, the outputs of several previous layers are
concatenated into a single layer. If there are more than two
layers, the hidden scale should be the same for all layers. This
simplifies the architecture design.

4) Data flow in processor: The data flow to run inference
of a quantized network in Phoenix is shown in Figure 4.
In order to explicitly illustrate the data flow, we list the bit
width in each step with M4E3 data format as an example.
All the input image, weights and biases are represented
by 32-bit floating-point. In our processor, the original input
image and weights are quantized with M4E3 data format and
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Algorithm 1 Quantization
1: while m <= # of layer do
2: i← −10
3: while i < 10 do
4: Wfp8 ← round(Wfp32 ×

2i,−MAXfp8,MAXfp8)

5: MSE ← 1
N

∑N
k=0(Wfp8 −Wfp32)

2

6: if MSE < MSEmin then
7: h s(m)← i
8: MSEmin ←MSE

9: i← i+ 1

10: m← m+ 1

11: return h s

stored in external memory, while biases are quantized to 16-
bit fixed-point to reduce quantization error. Multiplications
are performed with the quantized image and weights, and
the 15-bit floating-point (M10E4) products are aligned and
truncated to t-bit fixed-point in the truncating module (the
selection of t will be explained in Subsubsection VI-A2).
In this way, all the accumulation can be done in fixed-point
accumulators, which consumes fewer resources than floating-
point accumulators. The final outputs in each output channel
are converted to M4E3 floating-point again (and stored in
the external memory) before used by another CNN layer. In
the data flow, the truncating module and final data conversion
step introduce bit truncation and precision loss. However, the
precision loss has little impact on the final accuracy and is
validated in Subsection III-B with comprehensive experimental
results.

B. Quantization Results

We implement our quantization method with C language
based on the Darknet framework [50], by which the valida-
tion accuracy with single center-crop is evaluated with the
ImageNet validation set (50,000 labelled images) [51]. Our
quantization process is run on an Intel (R) Core (TM) i9-
7960X CPU working under 2.86GHz, while the evaluation
process is run on a Nvidia TITAN Xp GPU.

Six representative CNNs including the slim, medium and
deep CNNs are evaluated, as listed in Table II. The detailed
validation accuracy on the quantized network with all the
benchmarks are shown in Figures 5 and 6. We emulate
all 8 different (mantissa, exponent) combinations to validate
accuracy of the quantized CNNs. The 32-bit floating-point
results are included as the baseline.

In Figures 5 and 6, the dashed lines illustrate the 32-bit
floating-point baseline, while the values above the dashed lines
are the accuracy loss compared with the baseline. One can
see that our proposed approach can maintain top-1 and top-5
accuracy comparable to the baseline. On average, the top-1
and top-5 accuracy loss is within 0.5% and 0.3% compared
with the full precision results. Particularly, M5E2 always
achieves the highest accuracy compared with the other cases.
For the cases with more than or equal to 3-bit mantissa, they
maintain a low accuracy loss for all the six CNNs, while the

Quantization

External Memory

Accumulator
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15-bit
M10E4

t-bit
fixed

t+4-bit
fixedPE0

Mult
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Acc
PE16

…

Data Converter

32-bit,fixed8-bit,M4E3
16-bit
fixed

8-bit,M4E3 8-bit,M4E3 16-bit,fix

Image Weights Biases

32-bit FP32-bit FP 32-bit FP

15-bit
M10E4

t-bit
fixed

t+4-bit
fixed

Fig. 4. The data flow in Phoenix with M4E3 data format as an example (FP:
floating-point, Mult: 8-bit floating-point multiplier, TM: truncating module,
Acc: accumulator).

case with less than 3-bit mantissa can hardly find accurate
results. We also compare our proposed approach with the
fixed-point situation, marked as M7E0 in the figures (M7E0
means 7-bit mantissa and no exponent, exactly fixed-point). As
shown in Figures 5 and 6, M4E3 and M5E2 outperforms
the fixed-point for all six benchmarks. This is consistent with
our observation that non-uniform quantization fits better than
fixed-point quantization.
M4E3 and M5E2, which achieve the two best accuracies

among all the test cases, are also compared with five typical
approaches. We report both the top-1 and top-5 accuracy for
all six benchmarks in Table III, where ”-” indicates no reported
results in the literatures. We use the normalized top-1 accuracy
in Table III for the approaches proposed by ARM [20] and

TABLE II
CHARACTERISTICS OF CNN BENCHMARKS. GOP IS GIGA-OPERATIONS

NEEDED BY ONE 224×224 RGB IMAGE.

CNN Type Operations Model Weights
AlexNet slim 2.27 GOP 249.51 MB
VGG16 slim 30.94 GOP 553.43 MB

ResNet50 medium 9.74 GOP 46.05 MB
ResNet101 medium 19.70 GOP 166.37 MB
ResNet152 deep 29.39 GOP 229.39 MB

DenseNet201 deep 10.85 GOP 68.63 MB
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Xilinx [21] as reported in their paper. The top-1 and top-
5 accuracy in Table III show that our 8-bit floating-point
quantization method without any re-training can outperform
the literatures in most cases. Moreover, besides the approach
proposed by Nvidia [18], our method is the only one that can
reach deep networks.

On the other hand, M4E3 also has a comparable top-1
and top-5 accuracy compared with the 32-bit floating-point
baseline. This is one reason why we design our processor with
the M4E3 case. The other reason is that 8-bit floating-point
multiplier implemented with M4E3 costs less area and gains
higher working frequency than M5E2 does, which will be
discussed in detail in Subsection VI-A.

C. Normalization Analysis

In this subsection, different normalization methods are ex-
plored considering their influence on accuracy. During normal-
ization, we first use a mini-batch of 100 test images to fetch
the normalization parameter. This is because the normalization
parameter is defined as the second moment of the output
feature map, and more data can better describe its statistical
characteristics. We then define the normalization parameter as
the mean and standard deviation of the output feature map,
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Fig. 7. Top-1 and Top-5 accuracy with different normalization methods
and different number of test images (1/m: normalize with 2nd moment and
1 test image; 100/m: normalize with 2nd moment and 100 test images;
1/v: normalize with mean and standard deviation and 1 test image; 100/v:
normalize with mean and standard deviation and 100 test images).

and the normalization process is changed from Eq. (4) to Eq.
(11).

NORM Om
i =

Om
i − µ(Om)

σ(Om)
, (11)

where µ(Om) and σ(Om) denote the mean and standard
deviation of the outputs of layer m. During the evaluation
process, both one test image and a mini-batch of 100 test
images are applied to this normalization method. We take three
representative networks – VGG16, ResNet50 and ResNet152
– for slim, medium and deep networks as driving examples.
The evaluation results are shown in Figure 7. One can see
that normalization with a mini-batch of 100 test images
outperforms that with one image for all cases. On average, the
improvement of applying a mini-batch is 0.05% for both top-
1 and top-5 accuracy. However, the average quantization time
of applying a mini-batch increases by 50×, e.g., from 17s to
983s for ResNet152. The normalization method with mean and
standard deviation turns out to have almost the same accuracy
results as the normalization method with second moment. In
this way, we select the normalization method with second
moment, since this incurs fewer efforts in merging all the
normalization parameters.

IV. PROCESSOR ARCHITECTURE

In this section, we discuss in detail the architecture of
Phoenix, which efficiently overcomes the challenge of hard-
ware inefficiency caused by floating-point based operations.

A. Overview

The architecture of Phoenix is depicted in Figure 8. We
develop a floating-point function unit (FPFU), which is com-
posed of multiples of processing elements (PEs), to compute
the outputs of a layer in parallel. The PE, which is the key
component of Phoenix, is designed to efficiently perform
multiplications and additions of 8-bit floating-point data. The
on-chip memory system (MS) consists of three buffers: input
feature map buffer (IFMB), weight buffer (WB) and output
feature map buffer (OFMB). All these three buffers are ping-
pong architecture to hide the communication time between
on-chip and off-chip memory through direct memory access
(DMA) module. We design a central control module (CCM)
to arbitrate between different modules. The CCM decodes
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TABLE III
ACCURACY COMPARISON BETWEEN M4E3, M5E2, REFERENCES AND FP32. ”-” MEANS NO REPORTED RESULTS. RESULTS FOR ARM AND XILINX

ARE CONVERTED ACTUAL ACCURACY FROM THE NORMALIZED ACCURACY REPORTED IN THEIR PAPERS WITHOUT CIRCUIT IMPLEMENTATIONS, WHILE
OTHERS ARE BASED ON CIRCUIT IMPLEMENTATIONS.

Top-1 Accuracy (%) Top-5 Accuracy (%) for each network
AlexNet VGG16 ResNet50 ResNet101 ResNet152 DenseNet201

Nvidia [18] 57.05 80.06 70.84 - 73.10 91.06 74.40 91.73 74.70 91.78 - -
ARM [20] 56.71 - 70.38 - - - - - - - - -
Xilinx [21] - - - - 75.80 - - - - - - -
BFP [22] - - 68.32 - 72.76 - - - - - - -

V-Quant [28] 56.24 78.95 71.77 90.66 - - - - 78.35 93.95 77.32 93.51
FP32 (Baseline) 57.28 80.18 70.38 89.81 75.80 92.90 77.10 93.70 77.60 93.83 76.85 93.62

Phoenix (M4E3) 56.69 79.99 70.05 89.68 75.25 92.75 76.68 93.60 76.79 93.44 76.40 93.43
Phoenix (M5E2) 56.77 80.05 69.74 89.49 75.37 92.71 76.43 93.33 77.05 93.62 76.55 93.49
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Fig. 8. The Architecture of Phoenix.

various instructions stored in the instruction RAM (IR) into
detailed signals for other modules.

B. Architecture of PE

Phoenix is designed to perform floating-point multiplica-
tions and additions efficiently for performance gain and energy
reduction. In Phoenix, floating-point numbers are operated
inside the PEs, which construct the FPFU. The FPFU receives
activations from IFMB and weights from WB, then distributes
to different PEs. Each PE operates the dot product of two
vectors and stores the results into OFMB. Inside each PE, we
design a fully pipelined data-flow-based architecture, as shown
in Figure 9. Once a PE receives two vectors, it distributes
the data to Nm multipliers, whose full-precision results are
transferred into a truncating module (TM). The full-precision
data are aligned to have same scale and truncated into low-
precision to simplify the design of the adder tree, which is
followed to sum up all the products. A post process module
(PPM) then accumulates, activates and stores the data into the
OFMB.

1) 8-bit floating-point multiplier: 8-bit floating-point num-
bers are represented with scientific notations in the sign-and-
magnitude format, as illustrated in Eqs. (1) and (3). The
multiplication of two numbers is then divided into three fixed-
point components: (1) XOR of the signs; (2) multiplication of
mantissas; (3) addition of exponents. Take the MaEb format
as an example. An (a+1)-bit unsigned multiplier and a b-bit
unsigned adder are designed inside each 8-bit floating-point
multiplier of the PE. We design the multiplier to be (a+1)-bit
because the first bit of mantissa is hidden for saving storage
– ”1” for normal numbers and ”0” for subnormal numbers.
Meanwhile, bias is not included during addition, because this
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Fig. 9. The architecture of a PE.

is the same for all the numbers and we can address this at the
last step to simplify the adders. The 2a + b + 4 bits result is
arranged in the sign-product-sum order and delivered into the
truncating module.

2) Truncating module: The full-precision results from the
8-bit floating-point multipliers incur high burden for adders
because the results are in different scales, and only data in
the same scale can be summed up. Therefore, we develop a
truncating module to first align the data to the same scale and
then truncate them into low-precision with t bits to simplify
the design of adders (the selection of t will be explained in
Subsection VI-A with experimental results). In the alignment
and truncation process, the dot position is kept unchanged, and
the data width is truncated to t bits according to the exponent.
As shown in Figure 10, we set the scale to 2b and the sum
will be compared with 2b to decide whether the product is
shifted left or right. This is the alignment process to keep
the full precision. The aligned value is then cut into t bits,
where we consider saturation with overflow and round when
discarding least significant bits. In this way, the adder tree
can be implemented with fixed-point adders, which is more
hardware efficient than floating-point adders.

3) Post-processing module: The post-processing module
consists of a local controller module (LCM) and an arithmetic
logic unit (ALU). Controlled by the CCM of our processor,
LCM indicates the control signals for computing a layer, as
well as the activation parameters. The ALU is designed to
perform simple calculations, e.g., add biases, activate with
ReLU, accumulate intermediate results and convert the output
to 8-bit floating-point format.
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C. Memory System

The memory system in our processor is divided into three
parts: an input feature map buffer (IFMB), an output feature
map buffer (OFMB) and a weights buffer (WB), as shown in
Figure 8. All the buffers are designed in ping-pong manner
to hide the time of DMA memory accesses under the time of
computation.

The width of IFMB is set to be Ng × Nm × 8 bits as to
provide Nm 8-bit floating-point input activations to Ng PEs
each time. The Ng PEs are grouped into one PE group to
focus on Ng output activations on the same output feature
map, which share the same weights. In our processor, we
design Np PE groups, where the input activations are shared.
In this way, the width of WB is chosen to be Np ×Nm × 8
bits to provide weights for Np different output channels. The
OFMB is then set to have the width of Np ×Ng × 16 bits to
save Np ×Ng output activations. Although each pixel in the
output feature map is represented with 8-bit floating-point, we
keep the intermediate results with 16-bit precision to reduce
accuracy loss.

The parameters Ng, Nm and Np are decided to trade off
between area, overall performance and energy, which are
discussed in Subsection VI-A. The sizes of the three buffers
are also decisive to the area, overall performance and energy.
Previous proposed work applies large enough buffers to store
all the activations or weights for one layer [37] to avoid costly
off-chip memory access. However, such designs incur large
area and unscalability for larger and deeper CNNs. In our
processor, we trade off among the area, scalability, perfor-
mance and energy, and employ the smallest sizes which can
hide the DMA communication time. After exploring different
CNNs and buffer sizes, we deploy 64KB, 64KB and 32KB
for IFMB, OFMB and WB, respectively. During inference on
our processor, only when all the input feature map have been
processed and reused, or all the weights have been processed
and reused, or OFMB is full, will the off-chip memory be
accessed for loading new input feature maps, loading new
weights or storing output feature maps, respectively.

D. Central Control

The CCM is designed to arbitrate among different modules
and control the whole execution process. Firstly, it decodes
the instructions from IR efficiently and sets the corresponding
control registers. Then, different modules are activated accord-
ing to the control registers and the status of each module are

monitored by the control registers as well. Finally, the CCM
decides when to fetch the next instruction from the feedback
of the control registers. We also design a compiler to generate
the block-level instructions.

V. EXPERIMENTAL METHODOLOGY

In this section, we introduce the experimental methodology.
We develop Phoenix in Verilog and then synthesize, place
and route it with IC Compiler using TSMC 28nm library. The
energy cost is evaluated with the PrimeTime PX tool based
on the waveform files obtained from post-implementation
simulation. The off-chip memory access energy is estimated
by using the tools provided by MICRON [52]. We also design
a cycle accurate simulator to estimate the throughput for
different CNNs.

Baselines. We select the CPU, the GPU and customized
accelerators as baselines.

CPU and GPU. We use the Darknet framework to evaluate
the benchmarks on an Intel (R) Core (TM) i9-7960X CPU
working under 2.86GHz. We also use darknet to evaluate the
benchmarks on a Nvidia TITAN Xp GPU, which has a 12GB
DDR5. Furthermore, we use the cuBLAS [53] to implement
the benchmarks on the GPU.

Customized Accelerator. We compare Phoenix against
three customized accelerators: 8-bit fixed-point processor, Ey-
eriss [54] and OLAccel [19]. The 8-bit fixed-point processor
is implemented in the same architecture and with the same
parameters as that of Phoenix. We select Eyeriss as another
baseline because it provides an open-source estimation tool
for comparison [29]. We perform an ISO-area comparison
between Eyeriss and Phoenix. Thus, we scale Phoenix from
TSMC 28nm to TSMC 65nm, which is the technology node
used by Eyeriss. We allocate the same core area and the same
amount of on-chip memory. We first get the core area of 168 8-
bit PEs in Eyeriss. Then the number of PEs for our processor
is decided to meet the area target, and the configuration is
shown in Table IV. OLAccel does not provide any open-
source estimation tool, but reports their comparison results
with Eyeriss. Therefore, we compare our results with the
reported results in OLAccel.

Benchmarks. The six CNNs listed in Table II are used
as benchmarks for comparison with the CPU and the GPU.
Only convolutional layers in AlexNet and VGG-16 are utilized
for comparison with Eyeriss, since Eyeriss only supports
convolutional layers.

VI. EXPERIMENTAL RESULTS

A. Hardware Characteristics

TABLE IV
CONFIGURATIONS OF EYERISS AND Phoenix.

Eyeriss Phoenix
# of PEs 168 768

core area (mm2) 0.96 1.03
On-chip Memory 181.5KB WB:51.5KB

IFMB, OFMB: 64KB
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Fig. 12. Error rate compared with the quantized network for different layers
with respect to different truncating parameter t.

1) Multiplier: We explore all the eight (mantissa, exponent)
combinations for 8-bit floating-point multipliers before the im-
plementation of our processor. We implement multipliers with
Verilog and synthesize them with Synopsys design compiler
to evaluate the maximal working frequency and corresponding
area at TSMC 28nm technology node, as shown in Figure 11.
M4E3 and M5E2 are able to work under 2.86GHz and
2.5GHz with the area equivalent to 112 and 146 2-input
NAND gates, respectively. The maximal frequency for M6E1
and M7E0 (also known as fixed-point version) is 2.22GHz,
while the area is equivalent to 169 and 285 2-input NAND
gates, respectively. As for the cases with less than 4-bit
mantissa, they all reach the frequency of 3.03GHz, while the
corresponding area is 26, 29, 18 and 24 2-input NAND gates,
respectively. As discussed in Subsection III-B, M4E3 and
M5E2 outperform all the other cases for accuracy. In terms
of working frequency and area, M4E3 is better than M5E2.
Particularly, the maximal frequency of M4E3 is 14.4% higher
than that of M5E2. As to the area, M4E3 is 3.24× more
efficient than M5E2 when working under M5E2’s maximal
frequency. Meanwhile, compared with the fixed-point (marked
as M7E0 in the figure) version, M4E3 reduces the area
by 8.14× at the same working frequency. Although the case
M3E4 outperforms M4E3 in both working frequency and
area, the top-1 and top-5 accuracy loss of M3E4 are 3.73×
and 3.48× higher than that of M4E3, respectively. This is
not acceptable since maintaining accuracy is one of the key
motivations in our work.

2) Truncating Bit-width: In the truncating module (TM),
we cut the full precision number into t bits to simplify the
adder design. To convert the product of two M4E3 numbers
to the same scale in full precision, we need at least 22 bits.
This is because the mantissa of the product is 10 bits, and the
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Fig. 13. Error rate increment with respect to different truncating parameter
t.

exponent ranges from 2 to 14. Note that we exploit different ts
to evaluate the errors incurred by reducing precision. We take
four representative layers – fc6 in AlexNet, conv1 in VGG16,
conv6 in ResNet50 and conv4 in ResNet152 – as driving
examples. We depict the error rate for output activations of
each layer caused by reducing t from 22 to 7, as shown in
Figure 12. Compared with quantized networks, reducing t
from 22 to 14 incurs little error to activations of the layers
(less than 1%). However, when t is less than 14, the error
increases dramatically, e.g., the error increases from 4.38%
to 92.68% for conv4 in ResNet152, which is not acceptable.
This advantage comes from our quantization method. During
the quantization process, we normalize all activations and use
a Gaussian distribution to approximate the activations. When
we truncate it from 22 bits to 14 bits, we discard large values
located outside the 3σ region, which has less impact on the
accuracy of the layer than that of the values within the 3σ
region. Moreover, when t is less than 14, more values inside
the 3σ region are discarded, which results in a higher error
rate.

We further explore the influence on quantization error when
introducing the truncating technique, as shown in Figure 13.
When t changes from 22 to 14, this error remains in the
same level. However, when t decreases from 14 to 7, the
quantization error increases significantly, e.g., the quantization
error increases by 3.57% to 538.30% for conv4 in ResNet152.
This is not acceptable because it will incur large accuracy
loss. Two experimental results demonstrate that if we truncate
the bit width of activations from 22 bits to 14 bits, we will
not suffer from large quantization error. Therefore, we select
t = 14 in our current design. We speculate that in general t
can be selected based on 3σ of Gaussian distribution in this
study.

3) Memory System Parameters: In our current design, we
select Ng = 4 which is also efficient with small feature map
size. In CNNs based on the ImageNet data set, the smallest size
of a feature map is always 14×14 or 8×8, which indicates that
calculating 4 pixels in parallel achieves the highest efficiency.
The parameter Nm is chosen to be 32 with the consideration
of resource utilization. Most CNNs have their channel number
to be multiples of 32, except the first layer. In the first layer,
the channel number is 3 as they have RGB images as inputs.
When Nm > 32, e.g, Nm = 64, 50% of the multipliers will
be wasted for the layers like conv1, conv2 in AlexNet, conv1
in VGG-16, as the channel number of these layers is 32 or 96.
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At the same time, Np is decided by considering the resource
utilization and the memory bandwidth. As shown in Figure 14,
we explore the speedup and bandwidth requirement for VGG-
16 when enlarging Np from 1 to 128 by multiplying 2 each
time. When the Np is less than 64, the speedup doubles as
Np doubles. This is because all PEs are working efficiently.
However, the speedup turns out to have a saturation when
Np >= 64. This is because large amount of PEs are wasted
when the output channel number is less than 64. Furthermore,
the bandwidth requirement doubles when Np doubles as the
on-chip memory need to provide enough data for all PEs.
However, the increment in bandwidth also enlarges the buffer
size to hide the time of off-chip memory access, which will
incur larger area and energy. Therefore, we select Np = 16 in
our current design to trade-off between performance, resource
utilization, area and energy.

4) Implementation: Phoenix is implemented in TSMC
28nm technology node, and the results after placement and
routing are listed in Table V. At 0.9V, the peak throughput is
2.048 TMAC/s (TMACS) with a 1GHz core clock rate. The
core area is 1.44mm2 with the total power of 1091.2mW .
Among them, the memory system (including IFMB, WB,
OFMB) consumes 50.7% of the total power.

B. Performance

We compare the execution time of Phoenix against CPU
and GPU on the six CNNs listed in Table II. On CPU and
GPU, we evaluate the CNNs with both 8-bit floating-point and
32-bit floating-point precision (i.e., CPU-8, GPU-8, CPU-32,
GPU-32).

We normalize the execution time against that of Phoenix to
gain the speedup, as shown in Figure 15. Compared with CPU
and GPU in 8-bit precision, Phoenix achieves 290.7× and
4.7× speedup, respectively. This is because CPU and GPU do

TABLE V
THE RESULTS OF Phoenix AFTER PLACEMENT AND ROUTING.

Category Parameters
Technology TSMC 28nm HPC+ 1P10M
Core Size 1.2× 1.2mm2

Core Power 1091.2mW
# of MACs (Nm ×Ng ×Np) 2048

Supply Voltage Core 0.9V
Clock Rate 1GHz

Peak Throughput 2.048TMAC/s
Arithmetic Precision 8-bit floating-point
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not have any optimization on 8-bit floating-point operations.
During the evaluation, we make the conversions between 8-
bit floating-point and 32-bit floating-point representations for
each layer on both CPU and GPU, which incurs a large
time burden. We also evaluate the 32-bit precision on CPU
and GPU, and Phoenix is still 95.6× faster than CPU and
is 70% as fast as Titan Xp. Such speedups against CPU
mainly come from the FPFU modules in Phoenix, where we
optimize multiplications and additions of the 8-bit floating-
point number. Although Phoenix achieves 70% of the speed
of Titan Xp, it consumes less energy than Titan Xp does, as
explained in Subsection VI-C.

C. Energy

We report the energy comparison between Phoenix and
Titan Xp across all the six benchmarks, as shown in Figure 16.
We include the off-chip memory access energy in this com-
parison. Compared with GPU, Phoenix achieves 70.5× better
energy efficiency on average. This advantage comes from the
8-bit floating-point quantization, which reduces the memory
amount in 4×, thus reducing the number of memory accesses.
Moreover, Phoenix is designed to reuse both the weights
and activations, which also leads to the reduction in off-chip
memory accesses. Regarding the processor energy cost without
off-chip memory access, we can achieve 151× compared with
GPU. This results demonstrate the high energy efficiency of
Phoenix.

Meanwhile, the energy breakdown of Phoenix with off-
chip memory access for all evaluated benchmarks is shown
in Figure 17. We can observe that the energy consumed by
off-chip memory access is more than 50%. This is because
we still need to transfer large amount of data from the off-
chip memory to the on-chip memory system. The result also
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Fig. 17. Energy breakdown of Phoenix with off-chip memory accesses.

informs us that quantization and data reuse are the key points
for reducing the energy caused by off-chip memory access.

We further present the energy breakdown without off-chip
memory access in Figure 18. The on-chip memory system
(including IFMB, WB and OFMB) consumes about 30% of
the total energy. The WB consumes the least energy, because
we reuse the weights for all the input activations stored in
IFMB, which reduces the accesses for WB. Moreover, the WB
consumes more energy in AlexNet and VGG-16 than that of
other benchmarks. This is because these two networks have
relatively larger fully-connected layers, which benefits less in
Phoenix. As for the FPFU, it consumes about 70% of the total
energy. The FPFU, which is a fully-pipelined data-flow-based
architecture, works all the time when inputs exist. We do not
skip zero activations nor weights in our design, which makes
the FPFU consume more energy.

D. Discussion

1) Comparison with Fixed Point Processor: We also com-
pare Phoenix with the 8-bit fixed-point processor with
the same architecture and the same parameters. Hence, the
two processors have the same performance. Based on this,
Phoenix uses 1.2× less area than the 8-bit fixed-point proces-
sor according to the DC synthesize results, and both processors
have similar energy. Although the fixed-point processor does
not need the truncating module and also benefits from the data
reuse technique, the 8-bit fixed-point multipliers consumes
more area than 8-bit floating-point multipliers as explained
in Subsubsection VI-A1.

2) Comparison with Other Accelerators: Phoenix is also
compared with a state-of-the-art fixed-point accelerator, Ey-
eriss, as it provides the open-sourced estimation tool [29].
For fair comparison, we scale Phoenix to have the same area
and the same on-chip memory as Eyeriss in 65nm technology
node, as shown in Table IV. We only compare the computation
time for convolutional layers, because Eyeriss only supports
convolutional layers. All convolutional layers in AlexNet and
VGG-16 are compared in Tables VI and VII.

One can seen from Tables VI and VII, Phoenix has
a speedup of 3.32× and 7.45× for AlexNet and VGG-16,
respectively. This is mainly because we have more multipliers
for the same area as Eyeriss (768 in Phoenix versus 168 in
Eyeriss). In Phoenix, we flatten input RGB images according
to the kernel size to save computation time. Therefore, we
have larger speedup for the first convolutional layer for both
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Fig. 18. Energy breakdown of Phoenix without off-chip memory accesses.

benchmarks. As for layers with small input feature map size,
e.g. CONV5 in AlexNet (13× 13) and CONV5-1, CONV5-2,
CONV5-3 in VGG-16 (14 × 14), the advantages in perfor-
mance reduce. In these layers, the whole input feature map
can be stored in the IFMB, hence Phoenix benefits less from
data reuse than the layers with large input feature map size.

We further compare with the OLAccel [19], whose hardware
is based on the V-Quant quantization method. It does not
provide any open-sourced estimation tools so that we compare
with their reported performance comparison results with Eye-
riss. Regarding AlexNet and VGG-16, OLAccel outperforms
Eyeriss with 3.55× and 5.56× in performance, respectively.
Compared with OLAccel, our processor does not have better
performance in AlexNet, because they skip zero activations
during calculation, which saves execution cycles. However,
this does not work on larger CNN. Our processor outperforms
OLAccel in VGG-16 with a 1.34× reduction in execution
cycles. There are two reasons for that: 1) Phoenix has more
multiplier units than OLAccel (768 in Phoenix versus 576
in OLAccel); 2) The quantization method used in OLAccel
requires keeping around 3% of the weights and activations
with full-precision, which brings the burden to the hardware
and the execution process.

VII. RELATED WORK

CNNs are typically over-parameterized, and extensive stud-
ies in recent years focus on CNN approximation algorithms,
including weight reduction and quantization [55]. A deep com-
pression method was proposed in [56], [57]. Weight pruning
along with iterative re-training was first applied to CNNs
to reduce weights [56], after which weights were quantized
using k-means clustering. The quantized network was then
re-trained to compensate for quantization error. Finally, they
used Huffman coding to represent the quantized weights to
save memory [57].

TABLE VI
PERFORMANCE COMPARISON AGAINST EYERISS FOR ALEXNET (ms).

Layer Eyeriss Phoenix Speedup
CONV1 4.1 0.8 5.13×
CONV2 9.8 3.2 3.06×
CONV3 5.5 1.1 5.00×
CONV4 4.0 1.6 2.50×
CONV5 2.5 1.1 2.27×

Total 25.9 7.8 3.32×
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TABLE VII
PERFORMANCE COMPARISON AGAINST EYERISS FOR VGG-16 (ms).

Layer Eyeriss Phoenix Speedup
CONV1-1 12.7 0.8 15.88×
CONV1-2 270.2 23.7 11.40×
CONV2-1 135.1 13.2 10.23×
CONV2-2 270.3 26.5 10.20×
CONV3-1 68.0 11.3 6.02×
CONV3-2 136.0 22.7 5.99×
CONV3-3 136.0 22.7 5.99×
CONV4-1 35.0 7.3 4.79×
CONV4-2 70.0 14.5 4.83×
CONV4-3 70.0 14.5 4.83×
CONV5-1 16.1 3.6 4.47×
CONV5-2 16.2 3.6 4.50×
CONV5-3 16.2 3.6 4.50×

Total 1251.8 168 7.45×

A lot of researchers concentrate on quantization to save
storage. Binarization quantizes parameters into just two values,
typically {-1, 1} with a scaling factor [25], [34], [40], [58].
Although binarization achieves remarkable energy and storage
saving, it suffers from significant accuracy loss when bina-
rizing both weights and activations [25], [34], [58]. Among
them, XNOR Net [40] can maintain comparable accuracy for
AlexNet by only applying weights binarization. Ternary repre-
sentations, which adds zero to the binary set, were introduced
to help improve the accuracy [26], [35]. Logarithmic based
quantization was proposed in [59]. Their results showed that
5-bit weights with log-base

√
2 and 5-bit activations with log-

base 2 can achieve 2.72% top-1 accuracy loss and 1.71% top-
5 accuracy loss for VGG-16. Quantization with 8-bit fixed-
point is one general way to maintain low accuracy loss [17],
[47]. The authors explored the relationship between the bit
width and accuracy by quantizing the weights with floating-
point and activations with fixed-point [20]. Intel [60] also
tried to find out the relationship between the bit width and
accuracy. Their experiments also included one floating-point
quantization case along with other fixed-point cases. In [21],
the authors explored dynamic floating-point based quantization
with a calibration process to compensate for the accuracy loss
in their work. However, all the aforementioned work failed to
show promising results for deep CNNs such as ResNet152.

The approach in [18] showed that 8-bit fixed-point quan-
tization was possible for deep CNNs. In [27], the authors
quantized the weights with 5-bit and activations with 6-bit
using their weighted-entropy-based quantization method for
ResNet101, which achieved a small accuracy loss. A more
aggressive method [28] provided promising results for deep
CNNs. They quantized the small values of the weights into
4 bits while remained the rest 16 bits as full precision, by
dividing the weights into the low-precision and high-precision
regions according to the values of the weights. However,
these work all need extra components to address the full
precision weights. Different from all the above methods, our
quantization methods fully exploit the distribution of weights
and activations, thus obtaining a comparable or better accuracy
for deep CNNs without any extra calibration, fine-tuning or re-
training that need labelled data and extra computing. Access

to labelled data could be difficult in practice as hardware and
CNN algorithms are often developed by different parties.

CNN accelerators benefit a lot from the approximation
algorithms with respect to improving energy efficiency and
throughput. EIE [37], Cambricon-X [61] and Cambricon-S
[62] are the ones that use weights reduction techniques. They
build sparse matrix oriented architectures to accelerate CNNs
after deep compression. However, they need re-training to
compensate for accuracy loss. In addition, they need extra
hardware components to address the irregularity caused by
sparsity. FINN [41] and FP-BNN [63] are two binarization
based accelerators. Although they can achieve higher energy
efficiency and throughput than the full-precision counterparts,
they both have a high accuracy loss. The accelerator in [59]
was developed to speedup the quantized CNN with log-based
weights and activations. Stripes [48] and Bit Fusion [39] per-
formed layer-wise mixed-precision inference using bit-serial
MACs. However, they failed to exploit deep CNNs. OLAccel
was developed based on the V-Quant method [19], which used
a large amount of 4-bit MACs plus a small portion of mixed-
precision MAC units to cope with the high-precision region.
This leads to significant energy saving compared with 8-bit
fixed-point accelerators. However, their quantization method
also need re-training to compensate for the quantization error.
In addition, they keep a small portion of full-precision weights
and activations during their quantization process, which leads
to a hardware overhead to cope with the full-precision values.
Overall, Phoenix is better in terms of performance and energy
efficiency.

VIII. CONCLUSION

In this paper, we propose a normalization-oriented 8-bit
floating-point quantization method which saves memory stor-
age and memory access as well as maintaining negligible
accuracy degradation (less than 0.5% for top-1 and 0.3%
for top-5 accuracy). Due to the use of normalization, our
quantization method gets rid of extra cost for calibration, fine-
tuning or re-training to compensate for accuracy loss. We
further design a hardware processor named Phoenix to fully
leverage the benefits of our proposed quantization method
and address the hardware inefficiency caused by floating-
point operations. The key feature of Phoenix is the fully
pipelined data-flow-based PE, which shares input activations
and weights with other PEs, thus reducing inner bandwidth
requirements. The circuit placement and routing results show
that Phoenix can achieve peak performance of 2.048TMAC/s
with 1.44mm2 and 1091.2mW at TSMC 28nm technology,
respectively. Compared with a state-of-the-art accelerator,
Phoenix achieves 3.32× and 7.45× better performance with
the same core area for AlexNet and VGG-16, respectively.
Compared with Nvidia TITAN Xp GPU, Phoenix consumes
151× less energy with single image inference.
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