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Abstract. An analytical performance model for out of order issue superscalar
micro-processors is presented. This model quantifies the performance impacts
of micro-architecture design options including memory hierarchy, branch predic-
tion, issue width and changes in pipeline depth at all pipeline stages. The model
requires a minimal number of cycle accurate and trace driven simulations to cali-
brate and once calibrated estimates performance by formula. The model estimates
the performance of arbitrary micro-architecture configurations with an average
error of 6.4%. During early design stages when cycle accurate simulation is pro-
hibitive an analytical model can provide guidance to designers to increase design
quality and reduce design effort. This allows the design of an embedded proces-
sor to be rapidly tuned to its application by reducing the cost of exploring the
design space.

1 Introduction

During early planning stages of micro-processor design a clear understanding of the
impact various design decisions will have on performance is critical. Cycle accurate
simulation is often used to collect performance information, but is too time consum-
ing to be well suited to exploration of a large number of competing design options and
does not lead directly to an understanding of why a change in the micro-architecture
impacts performance. Because performing a large number of cycle accurate simula-
tions is prohibitively a faster method of producing performance information is needed.
We present a super-scalar, out of order issue microprocessor performance model that
estimates performance by formula and requires a minimal number of cycle accurate
and trace driven simulations to calibrate. This model allows greater freedom to explore
micro-architecture options and pipeline strategies during early design, and provides the
capability to more easily tune a processor to its application.

Our model is capable of estimating performance for different combinations of micro-
architecture options and pipeline depth at all stages of instruction execution. Micro-
architecture choices include issue width, resource contention, memory hierarchy, branch
predictor strategy and instruction prefetch. Combining these design elements into a
single performance model enables designers and design tools to optimize all of these
parameters simultaneously with minimal simulation time. The model is intuitive and
reasonably accurate. It requires constant runtime once built up and provides insight into
the causes of performance loss and the ways in which they interact in a realistic pro-
cessor. This work also establishes the methodology for generating a similar model for
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other base micro-architectures such as those used in embedded processors or under de-
velopment in industry. Up front simulation costs are minimized by decoupling all of the
various factors that contribute to performance loss and recombining them analytically.
Empirical cycle-accurate sensitivity analysis of pipeline depth and trace driven simula-
tion of the behavior of each micro-architecture design variable in isolation are used to
provide the inputs to the model.

Related to this paper, many approaches have been proposed to estimate perfor-
mance. A theoretical method for analyzing in-order pipelines is presented in [1], how-
ever the work does not apply to out-of-order issue architectures. Both in-order and
out-of-order front-end pipeline depth is analyzed in [2], though the backend was not.
While exploring the impact of increasing pipeline depth on processor performance in
the Pentium processor [3], an empirical performance model was developed to estimate
performance as a function of pipeline depth, but no micro-architecture changes were
considered.

A first-order superscalar processor model [4] provides a formula based estimate of
performance. It assumes an idealized micro-architecture free of resource contention
and capable of sustained throughput equal to issue width and estimates the perfor-
mance penalties due to branch mispredictions and instruction and data cache misses
from a trace-driven simulation. Building upon [4], we consider a more realistic micro-
architecture that includes resource contention and instruction prefetch. We also decou-
ple the behavior of the various caches and branch predictor so that a trace-driven simula-
tion is not required for each unique combination of cache and branch predictor settings.
In addition, we consider the performance impact of varying the backend pipeline depth
and combine that with the performance impact of the frontend analytically by employ-
ing a novel probabilistic performance loss event overlap model.

The rest of the paper is organized as follows. In Section 2 we present background
information on architecture design options considered, simulation engine used and our
methodology for deriving the model. In Section 3 we present our analytical performance
model. We experimentally verify the correctness and accuracy of our model in Section
4 and conclude the paper in Section 5.

2 Background

2.1 Micro-architecture Design Space

The Micro-Architecture considered in this work is a super-scalar out of order issue
CPU that includes the seven modules shown in Table 1 with the options considered for
each. Pipeline depth is simulated by clock cycle latency between the micro-architecture
modules defined in Table 1. These interconnects are listed in Table 2. The symbol used
to represent the latency of each interconnect is listed as well as a qualitative description
of the type of performance degradation caused by latency on each.

2.2 Methodology

All simulations were performed using modified version of SimpleScalar 2.0 with PISA
instruction set architecture in truncated runs with a fastforward period of forty mil-
lion instructions and a sample period of twenty million instructions. Six benchmarks
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Table 1. Micro-architecture Design Freedoms and Options

Design Freedom Options

Issue Width 2, 4, 8
Integer ALU Number Equal to issue width, 3/4 of issue width

Other Arithmetic Unit Number 1/4 Integer ALU, 1/2 Integer ALU
Branch Predictor Size/Strategy bimod 1K, BTB 128; bimod 2K, BTB 256;

combined bimod 2K, 2-level 1K, BTB 512;
combined bimod 4K, 2-level 2K, BTB 1K

Instruction Level 1 Cache
8KB Direct Mapped, 16KB Direct Mapped,
32KB 2 Way Associative, 64KB 4 Way Associative

Data Level 1 Cache 8KB Direct Mapped, 16KB Direct Mapped,
32KB 2 Way Associative, 64KB 4 Way Associative

Unified L2 Cache 128KB 2 Way Associative, 256KB 4 Way Associative,
512KB 4 Way Associative, 1MB 8 Way Associative

Table 2. Interconnect Pipeline Design Freedoms

Symbol Interconnect Performance Impact

LIL1/L2 IL1 Cache to L2 Cache Increased IL1 Cache Miss Penalty
LDL1/L2 DL1 Cache to L2 Cache Increased DL1 Cache Miss Penalty
L f etch Fetch Unit to IL1 Cache Increased Branch Misprediction Penalty

Prefetch Penalty
Ldispatch Fetch Unit to Dispatch Unit Increased Branch Misprediction Penalty

Lissue Dispatch Unit to Issue Unit Increased Branch Misprediction Penalty
LDL1 Issue Unit to DL1 Cache Stalls on data load dependencies
LIALU Issue Unit to each I-ALU Stalls on integer dependencies

Increased Branch Misprediction Penalty
LIMult Issue Unit to each I-Multiplier Stalls on multiply dependencies
LFALU Issue Unit to each FP-ALU Stalls on floating point dependencies
LFMult Issue Unit to each FP-Multiplier Stalls on floating point dependencies

(mcf, equake, art, mesa, parser and bzip2) from the SPEC2000 suite were evaluated to
produce all experimental results presented. These include a mix of floating point and
integer benchmarks and were chosen to represent a range of real world application be-
haviors. Performance of an architecture is summarized as the arithmetic mean of CPI
for the six benchmarks.

The model was developed by performing a study of the performance impact of each
design variable in isolation while holding all other design variables constant. The per-
formance impact of the design variable was graphed and, if possible, a mathematical
formula derived to fit the observed behavior. The formulas and empirical constants ob-
tained by studying each design variable in isolation are combined incrementally, group-
ing variables by category, developing mathematical expressions for the interaction be-
tween the behavior of each variable with other variables in its category and finally
between categories. This led to the division into front and backend in the model and the
grouping of terms.
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Deriving the expressions to describe the interaction between design variables in
terms of their performance impact relied upon insight into the anatomy of a performance
loss event. From [4] we know that some performance loss events are not inter-related.
We verified these findings and proceeded to the new factors considered by our model.
For each interaction we devised a hypothetical expression based upon insight into the
micro-architecture. We tested each hypothesis by performing an experiment to isolate
the interaction and measure by cycle accurate simulation.

3 Analytic CPI Model

We measure performance in terms of cycles per instruction (CPI) which we define as the
average number of clock cycles per instruction issued by the processor on the correct
execution path. CPI is proportional to execution time and is convenient for our purposes
because the delay caused by some performance loss event directly adds to execution
time, can simply be averaged over the number of instructions and added to the CPI.
Our approach to performance modeling is to count the number of performance loss
events and quantify their delay penalties. Should two delay penalties be incurred at
the same time the performance overhead should not be double counted. We correct
for overlapping performance loss events to obtain an accurate performance estimation
formula.

3.1 Model with Interconnect Pipeline

The CPI of a micro-architecture is a combination of performance loss due to miss
events, data dependency stalls and the baseline performance of the micro-architecture
with no extra pipelining in the absence of miss events. Baseline performance is a func-
tion of the issue width and resource constraints of the micro architecture combined
with the amount of instruction level parallelism in the benchmark. The miss events we
consider are branch mispredictions, level one instruction cache misses and level two
instruction and data cache misses. Level one data cache misses are modeled the same
as the latencies of arithmetic units that result in data dependency stalls.

We quantify the performance impact of latency in each of the interconnects from Ta-
ble 2 in terms of contribution to miss penalty and average duration of data dependency
stall, then combine their performance impacts to estimate system performance with
consideration of pipelined interconnect. Arithmetic units of the same type are grouped
together into a single module and have identical interconnect latency. We divide the in-
terconnects into frontend and backend interconnects. Frontend interconnects are those
that contribute latency to the pipeline prior to the issue stage. The equation for the
micro-architecture CPI model with consideration of pipelined interconnect is given in
(1).

CPI = CPIideal +CPIIL1 +CPIL2 +CPIFront +CPIBack (1)

3.2 Cache CPI Overhead

Miss rates for one type of level one cache are clearly independent of the other level
one cache configuration as well as the level two cache configuration. Given that the
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level two cache is sufficiently larger than the level one caches, our experiments show its
miss rates are roughly independent of level one cache configuration. For this reason the
miss rates for each cache option are measured independent of the configuration options
chosen for the other caches reducing the number of trace driven simulations required to
build up the model.

In equation (1) performance loos due to instruction level one cache misses, CPIIL1, is
defined as the access latency of the L2 cache, LL2(access), plus the interconnect latency
between the IL1 and L2 cache, LIL1/L2, multiplied by the miss rate of the instruction
level one cache. Instruction cache miss penalty is equal to the latency of the next higher
level of memory hierarchy [4].

CPIIL1 = MissRateIL1(LL2(access) +LIL1/L2) (2)

CPIL2 is the performance loss due to level two cache misses, broken down into
instruction and data cache miss rates, multiplied by the latency to main memory, LMM .
The FOverlapL2(data) term in (3) is the expected value for the size of a group of level two
data cache misses that all occur within the issue window size number of instructions
of the previous level two data cache miss. This factor accounts for the overlapping of
L2 data cache miss performance loss as described in [4]. We assume the miss penalty
for level two cache to be the latency of a main memory access. Unlike [4] we do not
calculate or use an overlap factor between level two data cache misses and other miss
events because we assume that fetch is blocked by the time the L2 data miss penalty is
incurred, preventing such overlap from occurring.

CPIL2 = (MissRateL2(inst) +
MissRateL2(data)

FoverlapL2(data)
)LMM (3)

3.3 Frontend CPI Overhead

Two sources of performance loss contribute to frontend CPI, branch misprediction and
prefetch overhead. When latency is added between the level one instruction cache and
the fetch logic the branch predictor does not have the opportunity to decide whether a
branch is taken until several clock cycles after it has been read from the cache. Prefetch
proceeds to fetch contiguous blocks in memory until a branch predicted as taken reaches
the fetch unit. The prefetch pipeline must then be flushed and fetching resumes at the
target address. The formula for CPIFront is given in (4).

CPIFront = α(CPIBPred(pipe) +CPIPre f etch)+CPIBPred (4)

CPIBPred is the performance loss due to branch misprediction

CPIBPred = MissRateBPredPenaltyIntrinsic (5)

where the intrinsic branch misprediction penalty, PenaltyIntrinsic, is measured for a given
benchmark by cycle accurate simulation for a single micro-architecture by dividing the
difference between CPIideal with and without perfect branch prediction by the branch
misprediction rate, MissRateBPred . In our experiments we observed that the branch mis-
prediction penalty had minimal dependence upon the branch prediction option chosen
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or the issue width of the microprocessor and is instead a function of pipeline depth
and performance loss overlap. For this reason we use a single measurement of intrin-
sic, baseline branch misprediction penalty for all micro-architecture configurations. The
branch misprediction rate is measured by trace driven simulation of each of the branch
predictor options in Table 1. The CPIBPred(pipe) term in (4) is defined as

CPIBPred(pipe) = MissRateBPredPenaltyBPred(pipe) (6)

where PenaltyBPred(pipe) is defined as

PenaltyBpred(pipe) = 2(L f etch +Ldispatch +Lissue +LIALU ) (7)

such that pipeline stages added anywhere in the integer pipeline contribute two cycles
of branch misprediction penalty. The justification for this is that when a branch is being
issued the instruction it depends upon (which we assume to be an integer instruction)
has often not yet committed, so adding one cycle of latency anywhere in the integer
pipeline will add one cycle of branch misprediction penalty due to data dependency
delay of branch issue. If there is no data dependency then adding one cycle of latency
to the frontend will add one cycle of branch misprediction penalty due to delayed res-
olution time of the branch. In both cases a cycle of latency in the backend will add
one cycle of branch misprediction penalty due to delayed resolution time of the branch.
Finally, adding one cycle of latency specifically to the frontend pipeline will add an
additional cycle of branch misprediction penalty because the frontend pipeline takes
longer to refill after it has been flushed due to a branch misprediction.

The CPIPre f etch quantity in (4) is defined as

CPIPre f etch =
HitRateBPredBranchesTakenL f etch

Instructions
(8)

where the ratio of BranchesTaken to Instructions is the probability that a given instruc-
tion is a taken branch. Multiplying by the branch prediction hit rate, HitRateBPred , fac-
tors out the prefetch flushes that overlap performance loss due to branch mispredictions
for those same branches.

3.4 Frontend Overlap Correction

Because performance loss in the frontend may overlap other performance loss events
we introduce in (4) a correction factor, α, based upon the approximation that the timing
of all potentially overlapping performance loss events are independent and random. The
equation for this correction factor is

α =
CPIunit

CPIideal +CPIBpred +CPIBPred(pipe) +CPIback
(9)

where CPIunit is similar to CPIideal but with an initial latency of one on all arithmetic
operations including the typically long latency floating point divide and root operations.
The CPIunit quantity can be thought of as the time the processor spends performing use-
ful work. The α overlap factor is the probability that performance loss events due to
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Table 3. Fitness of α overlap factor

IL1 Fetch Latency 1 2 4 8

Error 2.4% 1.7% 4.0% 11.6%

added frontend pipeline stages do not overlap some other source of performance loss,
which is the probability that they happen during the time that the processor is perform-
ing useful work. Branch misprediction can overlap other branch misprediction events
as well as data dependency stalls. It cannot overlap prefetch performance loss or in-
struction cache miss performance loss because during these periods no branches can be
fetched. When fetch becomes blocked due to extremely long latency data dependency
stalls due to level two data cache misses no overlap can occur.

To demonstrate the fitness of modeling the probability of overlap between perfor-
mance loss events as independent random variables with the α overlap factor we mea-
sure cycle accurate CPI for our set of benchmarks while letting the interconnect latency,
L f etch vary from one to eight while other micro-architecture freedoms are held constant
and compare to cycle accurate simulation. As presented in Table 3 the error for this
experiment is very low at small latencies and only 11.6% at extreme fetch latency.

3.5 Backend CPI Overhead

Performance loss for the interconnects in the back end is due to data dependency stalls.
The stall incurred by a dependent instruction is determined by the maximum commit
time of the instructions it is dependent upon. It does not matter which of the backend
interconnects contribute latency to the maximum commit time because the effect is
the same. Backend interconnects are the same way and can be modeled as a group by
summing their individual models.

CPIBack = ∑CPIx
xε{IALU,IMult,FALU,FMult,DL1}

(10)

Because performance loss in the back end is linear CPI overhead of individual intercon-
nects can be accurately modelled as in (11) where Cx is an empirical constant obtained
in a similar way to PenaltyBPred by calculating the slope of a line between two cycle
accurate CPI measurements while varying Lx.

CPIx = CxLx (11)

In the case of data loads the latency is increased by the latency to go to the level two
cache with probability equal to the level one data cache miss rate.

CPIDL1 = CDL1(LDL1 +MissRateDL1(LDL1/L2 +LL2(access))) (12)

We verify our backend pipeline model by checking it against cycle accurate sim-
ulation. In this experiment we use the baseline architecture used to calculate CPIideal

but let the latencies to the arithmetic units vary uniformly by factors of two from one
to sixteen. Maximum estimation error for this experiment was around 2% showing that
the backend model based upon linear performance penalty as a function of latency is
highly accurate.
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4 Experiments

We verify the correctness and accuracy of our performance model in an experiment
where thirty-two random configurations chosen from the options in Table 1 and laten-
cies ranging from zero to nine inclusive from the interconnects in Table 2 are measured
by cycle accurate simulation.

The cycle accurate CPI for each of the thirty two configurations is plotted as the
independent variable while the model estimate is plotted as the dependent variable.
As we can see the data points line up nicely along the y = x line. The model shows
good fidelity, with average error for this experiment of 6.4% and maximum error of
18.4%. We compare this to the error reported in [4] of 4.4% on average and 12% in
the worst case in which performance is estimated for a subset of five out of the sixteen
design variables we consider here. We succeed in decoupling the behavior of the various
caches and the pipeline depth as well as adding in consideration of pipeline depth in the
back end without paying too high a price in accuracy over the state of the art.

Fig. 1. Lumped Arithmetic Module Model Fidelity

Table 4. Average absolute error of individual benchmarks

art bzip2 equake mcf mesa parser average

7.3% 10.1% 8.8% 8.8% 7.2% 9.5% 8.6%

In Table 4 the average absolute error is broken down by benchmark. One of the
goals of the model is to abstract away the contribution of instruction stream to perfor-
mance. Based upon the assumption that this was possible, cycle accurate simulation of
only a single benchmark, equake, from the set of six mentioned in section 2.2 was used
to derive the form of the model as discussed in section 2.2. This was necessary dur-
ing the initial micro-architecture study because of the large number of cycle accurate
simulations required. By comparing the accuracy of the full model against other bench-
marks in Table 4 we validate the ability of the model to abstract away the contribution
of instruction stream to performance.
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The average absolute error reported for Fig. 1 differs from that in Table 4 because it
is calculated by summing the CPI of the benchmarks before calculating absolute error,
in effect treating the six benchmarks sampled as a single benchmark six times as long.
Significantly, the difference is small because the model tends to underestimate CPI, as
can be observed by comparing the number of data points below and above the y = x line
in Fig. 1. This tendency is a contributing factor to the model’s good fidelity.

5 Conclusions and Discussions

We have developed an accurate analytical performance model for superscalar out of
order issue microprocessors. It models changes in cache hierarchy, branch predictor
size and strategy, issue width and pipeline depth at all stages of execution. The model
provides performance estimates accurate to within 6.4% on average and 18.4% in the
worst case for a random set of micro-architecture design options and pipeline depths.
This compares to 4.4% on average and 12% in the worst case as reported in [4], which
serves as the basis for our work but considers only a third of the micro-architecture de-
sign freedoms in our model. Additionally our model provides further insight into what
the causes of performance loss are in modern micro-processors and how these sources
of performance loss interact with each other to determine the overall performance of a
micro-processor.

The model requires that two cycle accurate simulations be performed for each issue
width under consideration, an additional cycle accurate simulation to obtain the intrinsic
branch misprediction penalty of a benchmark and one cycle accurate simulation for each
type of arithmetic unit employed by the micro-architecture. The model also requires
a single trace driven simulation for each cache configuration option and each branch
predictor configuration option under consideration. The relatively low cost of building
up the model is the key feature that makes it practical. The entire range of possible
combinations of micro-architecture options and pipeline depths can be explored with a
minimal amount of simulation. This provides the basis for a speed/accuracy trade-off
giving designers the option to choose between the analytical model and cycle accurate
simulation to suite their needs.

Modular design of a processor targeting a specific application could benefit from
rapid exploration of the micro-architecture design space, considering all of the dis-
crete options in cache size, branch prediction, ALU type and issue width to minimize
area while meeting performance constraints. This type of model provides the capabil-
ity to perform rapid ”what if” analysis of micro-architecture design choices, enabling
designers to immediately see the impact a change can be expected to have on system
performance or enabling automated design tools to execute interactive refinement opti-
mization algorithms such as floorplanning with consideration of performance.

Future work includes the following objectives: developing an analytical power model
based upon the analytical performance model, applying the analytical performance
model to iterative automated micro-architecture and floorplanning co-optimization such
as in [5], modeling the interaction between performance loss events in micro-architectures
utilizing different branch misprediction recovery mechanisms, extending the analytical
performance model to multi-core processors and eliminating the need for cycle accu-
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rate simulation in building up the analytical performance model by replacing empirical
constants with formulas based upon instruction stream statistics.
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