
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 1

Device and Architecture Co-Optimization for FPGA
Power Reduction

Lerong Cheng, Fei Li, Yan Lin, Phoebe Wong, and Lei He

Abstract— Device optimization considering supply voltage Vdd
and threshold voltage Vt has little chip area increase, but a
great impact on power and performance in the nanometer
technology. This paper studies simultaneous evaluation of device
and architecture optimization for FPGAs. We first develop an
efficient yet accurate timing and power evaluation method, called
trace-based model. By collecting trace information from cycle-
accurate simulation of placed and routed FPGA benchmark
circuits and re-using the trace for different Vdd and Vt, we enable
device and architecture co-optimization considering hundreds of
device and architecture combinations. Compared to the baseline
FPGA architecture, which uses the VPR architecture model and
the same LUT and cluster sizes as those used by the Xilinx
Virtex-II, Vdd suggested by ITRS, and Vt optimized with respect
to the above architecture and Vdd, architecture and device co-
optimization can reduce energy-delay product by 20.5% and
chip area by 23.3%. Furthermore, considering power-gating
of unused logic blocks and interconnect switches (in this case
sleep transistor size is a parameter of device tuning), our co-
optimization reduces energy-delay product by 55.0% and chip
area by 8.2% compared to the baseline FPGA architecture. To
the best of our knowledge, this is the first in-depth study in the
literature on architecture and device co-optimization for FPGAs.

Index Terms— FPGA, Architecture, Delay estimation

I. INTRODUCTION

Field programmable gate arrays (FPGAs) allow the same sil-
icon implementation to be programmed or re-programmed for
a variety of applications. It provides low NRE (non-recurring
engineering) cost and short time to market. Due to the large
number of transistors required for field programmability and
the low utilization rate of FPGA resources (typically 62.5%
[1]), existing FPGAs consume more power compared to ASICs
[2]. As the process advances to nanometer technologies and
low-energy embedded applications are explored for FPGAs,
power consumption becomes a crucial design constraint for
FPGAs.

Recent work has studied FPGA power modeling and op-
timization. The leakage power of a commercial FPGA ar-
chitecture was quantified [1], and a high level FPGA power
estimation methodology was presented [3]. Power evaluation
frameworks were introduced for generic parameterized FPGA
[4]–[6] and it was shown that both interconnect and leakage
power are significant for FPGAs in nanometer technologies.

Manuscript received May 31, 2005; first revised December 24, 2005; second
revised May 27, 2006; final revised October 10, 2005. This work is partially
supported by NSF CAREER award CCR-0093273, NSF grant CCR-0306682.
We used computers donated by Intel.

The authors are with the Department of Electrical Engineering, Univer-
sity of California, Los Angeles, CA 90095 USA. Address comments to
lhe@ee.ucla.edu.

Digital Object Identifier.

As to power optimization, the interaction of a suit of power-
aware FPGA CAD algorithms without changing the existing
FPGAs was studied in [7]. Power-driven partition algorithm
for mapping applications to FPGAs with different Vdd-levels
[8] was proposed. A configuration inversion method to reduce
the leakage power of multiplexers without any additional
hardware [9] was investigated. Besides the power optimization
CAD algorithms, low power FPGA circuits and architectures
have also been studied. Region based power gating for FPGA
logic blocks [10] and fine-grained power-gating for FPGA
interconnects [11] were proposed, and Vdd programmability
was applied to both FPGA logic blocks [12], [13] and inter-
connects [14]–[16]. A new type of routing multiplexer and an
input control method were developed [17] to reduce leakage
of unused routing multiplexers, and circuitry combining gate
biasing, body biasing and multi-threshold techniques was
designed [18] to reduce interconnect leakage.

Architecture evaluation has been performed first for area and
delay. For non-clustered FPGAs, it was shown that an LUT
size of 4 achieves the smallest area [19] and an LUT size of 5
or 6 leads to the best performance [20]. Later on, the cluster-
based island style FPGA was studied to optimize area-delay
product and it showed that LUT sizes ranging from 4 to 6
and cluster sizes between 4 and 10 can produce the best area-
delay product [21]. Besides area and delay, FPGA architecture
evaluation considering energy was studied recently [4], [6],
[12]. It was shown that in 0.35µm technology, an LUT size of
3 consumes the smallest energy [4]. In 100nm technology, an
LUT size of 4 consumes the smallest energy [6]. [22] further
evaluated FPGA architectures with field programmable dual-
Vdd and power gating, and considering area, delay, and energy.

However, all the aforementioned architecture evaluation
assumed fixed supply voltage Vdd and threshold voltage Vt,
and sleep transistor size (if power gating is applied), and have
not conducted simultaneous evaluation of device optimization
such as Vdd and Vt tuning and architecture optimization such
as tuning LUT and cluster sizes. Architecture and device co-
optimization may obtain a better power and performance trade-
off compared to architecture tuning alone. We define hyper-
architecture as the combination of device and architectural
parameters. The co-optimization requires the exploration of
the following dimensions: cluster size N , LUT size K, Vdd,
Vt, and sleep transistor size if power gating is applied. The
total number of hyper-architecture combinations can be easily
over a few hundreds considering the interaction between these
dimensions. In the existing power evaluation frameworks, such
as cycle-accurate simulation [5] and transition density based
estimation [4], timing and power are calculated for each circuit

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 2

element. Therefore, it is time-consuming to explore the huge
hyper-architecture solution space using methods from [4], [5].
In order to perform device and architecture co-optimization, an
accurate yet extremely efficient timing and power evaluation
method is required.

The first contribution of this work is that we develop a
trace-based estimator (called Ptrace) for FPGA power, delay,
and area. We profile placed and routed benchmark circuits and
collect statistical information (called trace) on switching activ-
ity, short circuit power, near-critical path structure, and circuit
element utilization rate for a given set of benchmark circuits
(MCNC benchmark set in this paper). We show that the trace
is independent of device tuning and it can be used to calculate
FPGA chip-level performance and power for a number of de-
vice designs. Compared to performing placement-and-routing
by VPR [23] followed by cycle-accurate simulation (called
Psim) from [5], Ptrace has a high fidelity and an average error
of 1.3% for energy and of 0.8% for delay. The trace collecting
has the same runtime as evaluating FPGA architecture for one
combination of Vdd, Vt and sleep transistor size using VPR
and Psim. It took one week to collect the trace for the MCNC
benchmark set using eight 1.2GHz Intel Xeon servers while
all the hyper-architecture evaluation reported in this paper with
over hundreds of hyper-architecture combinations took only a
few minutes on one server.

The second contribution is that we perform the architecture
and device co-optimization for conventional FPGAs and FP-
GAs with power gating capability. We explore different Vdd,
Vt, and sleep transistor size combinations in addition to cluster
size and LUT size combinations. For comparison, we obtain
the baseline FPGA hyper-architecture which uses the VPR
architecture model [23] and the same LUT size and cluster size
as the commercial FPGAs used by Xilinx Virtex-II [24], and
Vdd suggested by ITRS [25], but Vt optimized by our device
optimization. Such baseline is significantly better than the
ones with no device optimization. Compared to the baseline
hyper-architecture, architecture and device co-optimization can
reduce energy-delay product (product of energy per clock
cycle and critical path delay, in short, ED) by 18.4% and chip
area by 23.3%. Furthermore, considering FPGA architecture
with power-gating capability, our architecture and device co-
optimization reduces ED by 55.0% and chip area by 8.2%
compared to the baseline. We also study the impact of utiliza-
tion rate and interconnect structure.

The rest of the paper is organized as follows. Section II
presents the background of FPGA architecture and existing
FPGA architecture evaluation flow. Section III introduces our
trace-based estimation models. Section IV applies the new
estimation models to architecture and device co-optimization.
Section V concludes this paper.

II. PRELIMINARIES

A. Conventional FPGA Architecture

We assume cluster-based island style FPGA architecture
such as that in [23] for all classes of FPGAs studied in this
paper. A cluster-based logic block (see Figure 1) includes
N fully connected Basic Logic Elements (BLEs). Each BLE

includes one K-input lookup table (LUT) and one flip-flop
(DFF). The combination of cluster size N and LUT size
K is the architectural issue we evaluate in this paper. The
logic blocks are surrounded by routing channels consisting of
wire segments. The input and output pins of a logic block
can be connected to the wire segments in routing channels
via a connection block (see Figure 1 (b)). A routing switch
block is located at the intersection of a horizontal channel
and a vertical channel. Figure 1 (c) shows a subset switch
block [26], where the incoming track can be connected to the
outgoing tracks with the same track number.1 The connections
in a switch block (represented by the dashed lines in Figure 1
(c)) are programmable routing switches. We implement routing
switches by tri-state buffers and use two tri-state buffers for
each connection so that it can be programmed independently
for either direction. We define an interconnect segment as
a wire segment driven by a tri-state buffer or a buffer.2 In
this paper, we investigate both uniform length-4 interconnect
wire segments and mixed-length interconnects. We decide the
routing channel width CW in the same way as the architecture
study in [23], i.e., CW = 1.2CWmin where CWmin is the
minimum channel width required to route the given circuit
successfully.

0
1
2
3

31 20

3
2
1
0 0

1
2
3

0 1 32

A C

D

B

switch
connection

connection switch
(b) Connection block and

SR
SR

connection block

SR

0123

(c) Switch block (d) Routing switches

SR

A B

logic
block
in1

block
connection

block
switch

(a) Island style
 routing architecture

Fig. 1. (a) Island style routing architecture; (b) Connection block; (c) Switch
block; (d) Routing switches.

B. Vdd gateable FPGA architecture

Power gating can be applied to interconnects and logic
blocks to reduce FPGA power. Figure 2 illustrates the circuit
design of the Vdd-gateable interconnect switch and logic
block from [22]. We insert a PMOS transistor (called a sleep
transistor) between the power rail and the buffer (or logic
block) to provide the power-gating capability. When a buffer
or logic block is not used, the sleep transistor is turned off by

1Without loss of generality, we assume subset switch block in this paper.
2We interchangeably use the terms of switch and buffer/tri-state buffer.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 3

S
w

it
ch

S
w

it
ch

D
ec

od
erSR

SR

SR

lo
g

 N
 S

R
A

M
 c

el
ls

2

Switch

Switch

Logic block

in1

(b) Vdd−gateable routing switches

(a) Vdd−gateable switch

dN

d1

d1

dN

N
 s

w
it

ch
es

(c) Vdd−gateable connection block

Connection switches

wire track

Dec_Disable

BA
M1

M2

Vdd

SR

BUFF
Switch

SR
SR

SR

SR

(d) Vdd gateable logic block

Logic block

Sram

Vdd

Fig. 2. (a) Vdd-gateable switch; (b) Vdd-gateable routing switch; (c) Vdd-gateable connection block; (d) Vdd-gateable logic block.

the configuration cell. SPICE simulation shows that power-
gating can reduce the leakage power of an unused buffer or a
logic block by a factor of over 300.

There is power and delay overhead associated with the sleep
transistor insertion. The dynamic power overhead is almost
negligible. This is due to the fact that the sleep transistors
stay either ON or OFF after configuration and there is no
charging and discharging at their source/drain capacitors. The
delay overhead associated with the sleep transistor insertion
can be bounded when the sleep transistor is properly sized.

Moreover, the connection box with power gating is different
from that in the conventional architecture. For the conventional
FPGA, an input MUX, which is effectively an implicit decoder
[23], is used in the connection box as illustrated in Figure 1(b).
However, for the power gating architecture, an explicit decoder
is used in the connection box to enable both the signal path and
power supply for the single input, as illustrated in Figure 2(c)
[22]. Because the decoder is no longer in the critical path, the
delay of connection box in Figure 2(c) is smaller than that in
Figure 1(b). The connection box in Figure 2(c) also has a much
smaller leakage power but a larger area and a slightly larger
dynamic power compared to the conventional architecture.

C. FPGA Architecture Evaluation Flow

The existing FPGA architecture evaluation flow considering
area, delay, and power [6] is illustrated in Figure 3. For a given
benchmark set, we first optimize the logic then map the circuit
to a given LUT size. TV-Pack is used to pack the mapped
circuit to a given cluster size. After packing, we place and
route the circuit using VPR [23] and obtain the chip level delay
and area. Finally, cycle-accurate power simulator [5] (in short
Psim) is used to estimate the chip level power consumption.

The architecture evaluation flow discussed above is time
consuming because we need to place and route every circuit
under different architectures and a large number of randomly
generated input vectors need to be simulated for each circuit.
However, the device and architecture co-optimization requires

Parasitic

Extraction

Cycle-accurate

Power

Simulator

(Psim)

Power

Arch

Spec

Logic Optimization(SIS)

Tech-Mapping

(RASP)

Timing-Driven Packing

(TV-Pack)

Placement & Routing

(VPR)

DelayArea

Benchmark

Fig. 3. Existing FPGA architecture evaluation flow for a given device setting.

the exploration of the following dimensions: cluster size N ,
LUT size K, supply voltage Vdd, threshold voltage Vt, and
sleep transistor size if power gating is applied. The total
number of hyper-architecture combinations can be easily over
a few hundreds considering the interaction between these
dimensions. Therefore, the conventional evaluation flow is not
practical for device and architecture co-optimization due to its
time inefficiency. In order to perform device and architecture
co-optimization, a fast yet accurate FPGA power and delay
estimator is required. Such estimator is just the one we are
going to introduce in Section III, the trace-based estimator.

III. TRACE-BASED ESTIMATION

In this section, we will introduce the efficient power and de-
lay estimation model, trace-based estimation method (Ptrace).
We speculate that during hyper-architecture evaluation, there
are the following two classes of information as summarized
in Table I. The first class only depends on architecture and
is called the trace of the architecture. The second class
only depends on device setting and circuit design. The basic
idea of Ptrace is as follows: For a given benchmark set,
we profile placed and routed benchmark circuits and collect
trace information under one device setting and for one FPGA

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 4

architecture. We then obtain chip-level performance and power
for a set of device for a given architecture parameter values
based on the trace information. Figure 4 illustrates the flow of
trace-based evaluation.

Arch

Spec

Trace-Based

Estimation

Trace

Collection

 Chip Level Area,

Delay, and Power

Circuit Level

Area, Delay,

and Power

Fig. 4. New trace-based evaluation flow. We perform the same flow as
Figure 3 under one device setting to collect the trace information.

A. Trace collection

As mentioned before, the trace information only depends
on architecture and remains the same when device setting
changes. For a given benchmark set and a given FPGA
architecture, the trace includes number of used type i circuit
elements (Nu

i), total number of type i circuit elements (N t
i),

average switching activity of used type i circuit elements (Su
i),

short circuit power ratio (αsc), and near-critical path structure
(see Table I). Near-critical path structure is the number of
each type of circuit elements (Np

i) on the near-critical path.
Device parameters include Vdd and Vt, which depend on
technology scale, and average leakage power of type i circuit
elements (P s

i), average load capacitance of type i circuit
elements (Cu

i), and average delay of type i circuit elements
(Di), which depend on circuit design. The device parameters,
such as circuit level delay and power, can be collected by
SPICE simulation or by measurement. After collecting the
trace and device level delay and power, we can perform Ptrace
to estimate the chip level delay, power, and area. Below, we
will show that the trace information is insensitive to the device
parameters and discuss our trace-based models.

Trace Parameters (depend on architecture)
Nu

i # of used type i circuit elements
Nt

i total # of type i circuit elements
Su

i avg. switching activity for used type i circuit elements
N

p

i
of type i circuit elements on the near-critical path

αsc ratio between short circuit power and switch power
Device Parameters

(depend on processing technology and circuit design)
V dd power supply voltage
V t threshold voltage
P s

i avg. leakage power for type i circuit elements
Cu

i avg. load capacitance of type i circuit elements
Di avg. delay of type i circuit elements

TABLE I
TRACE INFORMATION, DEVICE AND CIRCUIT PARAMETERS.

B. Dynamic Power Model

Dynamic power includes switch power and short-circuit
power. A circuit implemented on an FPGA cannot utilize all
circuit elements. Dynamic power is only consumed by the
used FPGA resources. Our trace-based switch power model

distinguishes different types of used FPGA resources and
applies the following formula:

Psw =
∑

i

1

2
Nu

i · f · V 2

dd · Csw
i (1)

The summation is over different types of circuit elements, i.e.,
LUTs, buffers, input pins and output pins. For type i circuit
elements, Csw

i is the average switch capacitance and Nu
i is the

number of used circuit elements, f is the operating frequency.
In this paper, we assume that the circuit works at its maximum
frequency, i.e., the reciprocal of the near-critical path delay.
The switch capacitance is further calculated as:

Csw
i = (

∑

j∈Eli

Ci,j/N
u
i) · Su

i

= Cu
i · Su

i (2)

For type i circuit elements, Cu
i is the average load capacitance

of used circuit elements, which is averaged over Ci,j , the
local load capacitance for used circuit element j. Eli is the
set of used type i circuit elements, and Su

i is the average
switching activity of used type i circuit elements. We assume
that the average switching activity of the circuit elements
is determined by the circuit logic functionality and FPGA
architecture. The device parameters of Vdd and Vt have a
limited effect on switching activity. We verify this assumption
in Table II by demonstrating the average switching activity of
five benchmarks at different technology nodes, and Vdd and
Vt levels.

benchmark 70nm Vdd=1.1 100nm Vdd=1.3 70nm Vdd=1.0
Vt=0.25 Vt=0.32 Vt=0.20

logic inter- logic inter- logic inter-
connect connect connect

alu4 2.06 0.55 2.01 0.54 2.03 0.59
apex2 1.73 0.47 1.75 0.47 1.70 0.47
apex4 1.23 0.27 1.19 0.26 1.16 0.29
bigkey 1.75 0.56 1.96 0.59 1.71 0.55
clma 0.90 0.21 0.87 0.21 0.91 0.23

TABLE II
SWITCHING ACTIVITIES FOR DIFFERENT TECHNOLOGY NODES, VDD AND

VT. ARCHITECTURE SETTING: N = 10, K = 4. UNIT: SWITCH PER

CLOCK CYCLE.

The short circuit power is related to signal transition time,
which is difficult to obtain without detailed simulation using
a real delay model. In our trace-based model, we model the
short circuit power as:

Psc = Psw · αsc (3)

Where αsc is the ratio between short circuit power and switch
power. Although this ratio value at the circuit level depends
on FPGA circuit design and architecture, we assume that αsc

does not depend on device and technology at the chip level.
We verify this assumption in Table III3 by showing the average
short circuit power ratio at different technology nodes, Vdd,
and Vt levels.

3Because the delay between buffers is usually large for FPGA circuits, the
short circuit power ratio could be big.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 5

benchmark 70nm Vdd=1.1 100nm Vdd=1.3 70nm Vdd=1.0
Vt=0.25 Vt=0.32 Vt=0.20

logic inter- logic inter- logic inter-
connect connect connect

alu4 1.43 1.12 1.44 1.16 1.46 1.15
apex2 1.44 0.89 1.42 0.93 1.48 0.92
apex4 1.08 0.86 1.15 0.79 1.18 0.82
bigkey 0.74 1.64 0.76 1.71 0.72 1.68
clma 1.11 1.72 1.21 1.62 1.16 1.63

TABLE III
SHORT CIRCUIT POWER RATIOS FOR DIFFERENT TECHNOLOGY NODES,

VDD AND VT. ARCHITECTURE SETTING: N = 10, K = 4.

C. Leakage Power Model

The leakage power is modeled as follows,

Pstatic =
∑

i

N t
i P

s
i (4)

For resource type i, N t
i is the total number of circuit elements,

and P s
i is the leakage power for a type i element. Notice that

usually N t
i > Nu

i because the resource utilization rate is low
in FPGAs (typically 62.5% [1]). For an FPGA architecture
with power-gating capability, an unused circuit element can
be power-gated to reduce leakage power.4 In this case, the
total leakage power is modeled by the following formula:

Pstatic =
∑

i

Nu
i Pi + αgating ·

∑

i

(N t
i − Nu

i)Pi (5)

where αgating is the average leakage ratio between a power-
gated circuit element and a circuit element in normal operation.
SPICE simulation shows that sleep transistors can reduce
leakage power by a factor of 300 and αgating = 0.003 is
used in this paper.

D. Delay Model

To avoid the static timing analysis for the entire circuit
implemented on a given FPGA fabric, we obtain the structure
of the ten longest circuit paths including the near-critical
path for each circuit. The path structure is the number of
elements of different resource types, i.e., LUT, wire segment
and interconnect switch, on one circuit path. We assume that
the new near-critical path due to different Vdd and Vt levels
is among these ten longest paths found by our benchmark
profiling. When Vdd and Vt change, we can calculate delay
values for the ten longest paths under new Vdd and Vt levels,
and choose the largest one as the new near-critical path delay.
Therefore, the FPGA delay can be calculated as follows:

D =
∑

i

Np
i Di (6)

4In this paper, we assume the wire segment length change introduced by
power gating can be ignored. In our experiment, wire length is calculated as
4 ×

√
areatile [23], where areatile is the area of a logic block with the

interconnect surrounding it. The area overhead introduced by power gating is
less than 30%. Therefore, the change of wire segment length is less than 14%.
Moreover the load capacitance of a routing buffer is mainly determined by
the input and output capacitances of buffers. The wire capacitance is a small
portion (about 20%) of the load capacitance. Therefore, the area increase
introduced by power gating will have small impact on the delay and power
estimation.

For resource type i, Np
i is the number of circuit elements that

the near-critical path goes through, and Di is the delay of
such a circuit element. Di is a circuit parameter depending on
Vdd, Vt, process technology, and FPGA architecture.5 To get
the path statistical information Np

i , we only need to place and
route the circuit once for a given FPGA architecture.

E. Validation of Ptrace

To validate Ptrace, we compare it to the conventional
architecture evaluation flow for ITRS [25] 70nm technologies.
We assume Vdd=1.0V and Vt=0.2V and map 20 MCNC
benchmarks, as illustrated in Table IV, to two architectures:
{N = 8, K = 4} and {N = 6, K = 7}. In Table IV,
the number of LUTs and flip flops are counted under the
architecture N=8 and K=4. Notice that we can map the
benchmarks to different LUT and cluster sizes. We collect
trace using the conventional architecture evaluation flow in
70nm technology, Vdd=1.0V and Vt=0.2V. Figure 5 compares
energy and delay between the conventional evaluation flow
and Ptrace for each benchmark. The average energy error of
Ptrace is 1.3% and average delay error is 0.8%. From the
figure, the Ptrace has the same trends for energy as Psim
does and for delay as VPR does. Therefore, Ptrace has a high
fidelity. Moreover, the run time of Ptrace is 2s, while that of
the conventional evaluation flow is 120 hours.

benchmark # LUTs # Flip flops benchmark # LUTs # Flip flops
alu4 1607 0 ex5p 1201 0

apex2 2118 0 frisc 5926 900
apex4 1291 0 misex3 1501 0
bigkey 2935 224 pdc 5608 0
clma 13537 33 s298 2548 8
des 2172 0 s38417 8458 1463

diffeq 1933 377 s38584 7040 1260
dsip 1619 224 seq 1953 0

elliptic 4185 1138 spla 3938 0
ex1010 4721 0 tseng 1299 382

TABLE IV
MCNC BENCHMARK LIST. THE NUMBER OF LUTS AND FLIP FLOPS ARE

COUNTED UNDER THE ARCHITECTURE N=8 AND K=4.

IV. HYPER-ARCHITECTURE EVALUATION

A. Overview

In this section, we use Ptrace to perform device and ar-
chitecture evaluation. We consider 70nm ITRS technology
and evaluate four FPGA hyper-architecture classes: Homo-
Vt, Hetero-Vt, Homo-Vt+G and Hetero-Vt+G. Homo-Vt is the
conventional FPGA using homogeneous Vt for interconnects
and logic blocks. Hetero-Vt applies different Vt to logic
blocks and interconnects. Homo-Vt+G and Hetero-Vt+G are
the same as Homo-Vt and Hetero-Vt, respectively, except that
unused logic blocks and interconnects are power-gated [22].
We compare them with the baseline hyper-architecture, which

5Delay of each circuit element is measured with the worst case switch.
When power gating is applied, a single gating transistor is used for the entire
logic block. In order to measure the delay of each circuit element in a logic
block with gating transistor, a series of randomly generated vectors are used
as the inputs to the block and the worst case delay is measured for each circuit
element under such random input vectors.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 6

0

9

18

27

36

45

0 9 18 27 36 45
Delay from VPR(ns)

D
e
la

y
 f

r
o

m
 P

t
r
a

c
e
(
n

s
)

8x4

6x7

4% Error

0

2

4

6

8

10

0 2 4 6 8 10
Energy from Psim (nJ)

E
n

e
r
g
y
 f

r
o
m

 P
tr

a
c
e
 (

n
J
) 8x4

6x7

5% Error

Fig. 5. Comparison between Psim and Ptrace

uses the VPR architecture model [23] and has the same LUT
size and cluster size as those used by the Xilinx Virtex-II [24]
(cluster size of 8, LUT size of 4), Vdd suggested by ITRS [25]
(0.9v), and Vt of 0.3v that is optimized with respect to the
above architecture and Vdd. The baseline hyper-architecture
and evaluation ranges for device and architecture are presented
in Table V. Note that a high Vt is applied to all SRAM cells
for configuration to reduce their leakage power as suggested
by [12].

In the subsections IV-B to IV-D, we assume the following:
• The utilization rate (defined as the utilization rate of logic

blocks, i.e., number of used logic blocks over the number
of total available logic blocks) is 0.5.

• All interconnect wire segments span 4 logic blocks with
fully buffered routing switches.

• The routing channel width is 1.2 times of the minimum
channel width that allows the FPGA circuit being routed.

• All benchmark circuits work at their highest frequency
(1/critical path delay).

The impact of utilization rate and interconnect architecture

will be discussed in subsections IV-E and IV-F, respectively.
For each hyper-architecture, we compute the energy, delay
and area as the geometric mean of 20 MCNC benchmarks in
Table IV. Moreover, in the rest of this paper, we use CVt for
Vt of logic blocks and IVt for Vt for global interconnects. Note
that CVt=IVt in Homo-Vt and Homo-Vt+G. To illustrate the
tradeoff between energy and delay, we introduce the concept
of dominant hyper-architecture: If hyper-architecture A has
less energy consumption and a smaller delay than hyper-
architecture B, then we say that B is inferior to A. We define the
dominant hyper-architectures as the set of hyper-architectures
that are not inferior to any other hyper-architectures.

We organize the rest of this section as follows: First,
Section IV-B illustrates the necessity of device and architecture
co-optimization. Then Section IV-C presents the energy and
delay tradeoff and ED reduction achieved by device and
architecture co-optimization. Section IV-D discusses the de-
vice and architecture co-optimization considering area. Finally,
Sections IV-E and IV-F analyze the impact of utilization
rate and compare the evaluation result of different routing
architectures, respectively.

Baseline FPGA device/arch parameter values
Vdd Vt N K
0.9v 0.3v 8 4
Value range for device/arch optimization
Vdd Vt N K

0.8v-1.1v 0.2v-0.4v 6-12 3-7

TABLE V
BASELINE HYPER-ARCHITECTURE AND EVALUATION RANGES.

B. Necessity of device and architecture co-optimization

In this section, we show the necessity of device and archi-
tecture co-optimization. We first discuss the need of device
tuning, then compare the results of optimizing device and
architecture separately and simultaneously.

Architecture evaluation has been studied in previous re-
search [4], [5], [21], [22], [27], [28]. However, device tuning
has not been reported in the literature. Our experiments show
that device tuning has a much greater impact on delay and
energy than architecture tuning does, which is demonstrated
in Figure 6 and Table VI. Each set of data points in Figure 6
is the dominant hyper-architectures for a given device setting.6

For example, set D4 is the dominant hyper-architectures under
Vdd=1.0V and Vt=0.25V. From the figure, we observe that a
change on the device leads to a more significant change in
energy and delay than architecture change does. For example,
for device setting Vdd = 0.9V and Vt=0.25v, energy for
different architectures ranges from 1.82nJ to 2.11nJ, and delay
ranges from 13.68ns to 16.46ns. However, if we increase Vt
by 0.05v, i.e., Vdd = 0.9V and Vt = 0.3V , the energy ranges
from 1.17nJ to 1.32nJ and the delay ranges from 18.99ns to
23.24ns. Therefore, it is important to evaluate both device and
architecture instead of evaluating architecture only.

6Dominant hyper-architectures for a given device setting are the hyper-
architectures that are not inferior to any other hyper-architectures under such
device setting.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 7

0

2

4

6

8

10

12

14

16

18

10 15 20 25 30 35 40
Delay (ns)

E
n

er
g

y
 p

er
 c

y
cl

e
(n

J
)

D1 Vdd 0.9 Vt 0.25

D2 Vdd 0.9 Vt 0.30

D3 Vdd 0.9 Vt 0.35

D4 Vdd 1.0 Vt 0.25

D5 Vdd 1.0 Vt 0.30

D6 Vdd 1.0 Vt 0.35

D7 Vdd 1.1 Vt 0.25

D8 Vdd 1.1 Vt 0.30

D9 Vdd 1.1 Vt 0.35

D1

D9

D8

D7

D6

D5
D4

D3

D2

Fig. 6. hyper-architectures under different device settings.

Set Vdd Vt Min energy Max energy Min delay Max delay
(V) (V) (nJ) (nJ) (ns) (ns)

D1 0.9 0.25 1.82 2.11 13.68 16.46
D2 0.9 0.30 1.17 1.32 18.99 23.24
D3 0.9 0.35 0.97 1.05 31.01 36.40
D4 1.0 0.25 2.30 3.17 11.90 14.06
D5 1.0 0.30 1.37 1.95 15.60 17.50
D6 1.0 0.35 1.11 1.30 21.31 24.66
D7 1.1 0.25 5.58 17.01 10.60 12.43
D8 1.1 0.30 3.10 9.03 13.05 15.40
D9 1.1 0.35 1.95 4.73 17.01 19.92

TABLE VI
POWER AND DELAY RANGES FOR DIFFERENT DEVICE SETTINGS.

There are three methods to perform device and architecture
optimization. In the first method, we first optimize device
using one architecture then optimize the architecture under
the optimized device setting and call it device-arch method.
In the second method, we first optimize the architecture within
one device setting then optimize the device setting according
to the optimized architecture and call it arch-device method.
In the third method, we optimize architecture and device
simultaneously and call it simultaneous method. Both methods
arch-device and device-arch cannot guarantee the optimal
solution. Table VII compares the min-ED hyper-architectures
for Homo-Vt found by three different methods. For both arch-
device and device-arch, we start search from the baseline
case {N = 8, K = 4, Vdd = 0.9V , and Vt = 0.3V }.
In our experiment, we find that there are two local optimal
hyper-architectures in the whole solution space: {N = 6,
K = 7, Vdd = 0.9V , Vt = 0.3V } and {N = 10, K = 4,
Vdd = 1.0V , Vt = 0.3V } which is also the global optimal.
In this particular example, both arch-device and device-arch
achieve the same local optimal hyper-architecture {N = 6,
K = 7, Vdd = 0.9V , Vt = 0.3V }. If we start search from
some other hyper-architectures, arch-device and device-arch
may achieve other local optimum but there is no guarantee
of the global optimum. In order to obtain the global optimal
solution, we have to use the simultaneous method. From
Table VII, we observe that simultaneous method can reduce
ED by 13.3% compared to arch-device and device-arch. We
also see that the runtime of arch-device and device-arch is
shorter than that of simultaneous method. However, due to the
time efficiency of Ptrace, the runtime of simultaneous method

is also small (only 34.1s). Therefore, it is still worthwhile
performing simultaneous device and architecture optimization.

C. Energy and delay tradeoff

In this section, we first compare the impact of device
tuning and architecture tuning, then present min-energy and
min-delay hyper-architectures, and finally discuss the energy
and delay tradeoff. For the classes Homo-Vt+G and Hetero-
Vt+G with power-gating, we assume the following fixed sleep
transistor size: 210X PMOS for a logic block, 10X PMOS for
a switch buffer, and 1X PMOS for a connection buffer. We
then discuss the sleep transistor tuning in Section IV-D.

Table VIII summarizes the minimum delay and minimum
energy hyper-architectures for each class. The minimum delay
hyper-architectures have cluster size of 6 and LUT size of
7 which are the same for all classes. The minimum energy
hyper-architectures have LUT size of 4 for all classes. This is
similar to the previous evaluation result [5], [22]. As expected,
the min-delay hyper-architectures have the highest Vdd and
lowest Vt. However, the min-energy hyper-architectures have
the lowest Vdd but not the highest Vt. This is because we
assume that each circuit works at its highest possible frequency
(1/critical path delay). The energy is calculated as E = delay ·
power. When Vt is too high, the delay is so large that the
energy per clock cycle increases.

Usually, higher performance hyper-architectures consume
more energy. To illustrate the energy and delay tradeoff,
we present the dominant hyper-architectures of Homo-Vt and
Hetero-Vt in Figure 7 (a) and those of Homo-Vt+G and
Hetero-Vt+G in Figure 7 (b). From the figure, we find that the
energy difference between Homo-Vt+G and Hetero-Vt+G is
smaller than that between Homo-Vt and Hetero-Vt. This is be-
cause leakage power is significantly reduced by power-gating
and therefore more detailed Vt tuning such as heterogeneous-
Vt has a smaller impact. We also see that dominant hyper-
architectures of Homo-Vt+G and Hetero-Vt+G have smaller
delay than that of Homo-Vt and Hetero-Vt. This is due to the
fact that the connection box with power gating has smaller de-
lay than that without power gating as discussed in Section II-B.
Moreover, with the dominant hyper-architecture figure, we can
obtain the minimum energy solution for a given performance
range. For example, if we want to find the minimum energy
solution for Homo-Vt with delay limit 15ns, we only need to
pick the dominant hyper-architecture whose delay is closest to
15ns.

In order to achieve the best energy and delay tradeoff, we
find the hyper-architectures with the minimum energy delay
product (in short min-ED) in Table IX. Compared to the
baseline, ED reduction is 14.5% and 18.4% for Homo-Vt and
Hetero-Vt, respectively. If power gating is applied, ED can be
reduced by about 60% for both Homo-Vt+G and Hetero-Vt+G.
The similar ED reduction for power gating classes is due to the
fact that leakage power is greatly reduced by power-gating and
therefore the more detailed Vt tuning such as heterogeneous-
Vt has a small impact on power reduction as discussed before.
We also see that, compared to the min-ED hyper-architectures
without power gating, the min-ED hyper-architectures with

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 8

Vdd (V) CVt (V) IVt (V) (N, k) Energy (nJ) Delay (ns) ED (nJ· ns) runtime (s)
arch-device 0.9 0.30 0.30 (6,7) 1.38 19.8 27.3 5.1
device-arch 0.9 0.30 0.30 (6,7) 1.38 19.8 27.3 3.4

simultaneous 1.0 0.30 0.30 (10,4) 1.37 17.5 24.1 (-13.3%) 34.1

TABLE VII
MIN-ED HYPER-ARCHITECTURE OF OPTIMIZING DEVICE AND ARCHITECTURE SEPARATELY AND SIMULTANEOUSLY.

hyper-architecture Minimum delay hyper-architecture Minimum energy hyper-architecture
Class Vdd(V) CVt(V) Ivt(V) (N,K) Energy(nJ) Delay(ns) Vdd(V) CVt(V) Ivt(V) (N,K) Energy(nJ) Delay(ns)

Homo-Vt 1.1 0.20 0.20 (6,7) 31.22 8.86 0.8 0.35 0.35 (10,4) 0.942 59.2
Hetero-Vt 1.1 0.20 0.20 (6,7) 31.22 8.86 0.8 0.30 0.35 (12,4) 0.920 43.6

Homo-Vt+G 1.1 0.20 0.20 (6,7) 15.98 9.45 0.8 0.30 0.30 (12,4) 0.550 30.5
Hetero-Vt+G 1.1 0.20 0.20 (6,7) 15.98 9.45 0.8 0.30 0.25 (10,4) 0.549 24.3

TABLE VIII
MINIMUM DELAY AND MINIMUM ENERGY HYPER-ARCHITECTURES.

0

8

16

24

32

8 21 34 47 60
Delay (ns)

E
n

er
g

y
 p

er
 c

y
cl

e
(n

J
)

Homo-Vt
Hetero-Vt

Min-ED

hyper-arch for

Homo-Vt

Min-ED

hyper-arch

for Hetero-Vt

Min delay

hyper-arch

for Homo-Vt

Min energy

hyper-arch

for Homo-Vt
Min energy

hyper-arch

for Hetero-Vt

(a)

0

3

6

9

12

15

18

8 13 18 23 28 33
Delay (ns)

E
n

er
g

y
 p

er
 c

y
cl

e
(n

J
)

Homo-Vt+G

Hetero-Vt+G

5

6

7

Min-ED

hyper-arch for

Homo-Vt+G

Min-ED

hyper-arch

for Hetero-

Min delay hyper-

arch for Homo-

Vt+G and Hetero-

Min energy

hyper-arch for

Homo-Vt

Min energy

hyper-arch for

Hetero-Vt+G

(b)

Fig. 7. Dominant hyper-architectures. (a) Homo-Vt and Hetero-Vt (b) Homo-
Vt+G and Hetero-Vt+G

power gating has a lower Vt. This is because leakage power
is greatly reduced when power gating is applied, therefore a
lower Vt can improve performance without much penalty on
leakage.

D. ED and area tradeoff

In the previous sections, we assume fixed sleep transis-
tor sizes for Homo-Vt and Hetero-Vt+G and discuss hyper-
architecture evaluation to minimize ED without considering
area. However, area is important for FPGA design. Power-
gating using sleep transistors may change delay and area

tradeoff for FPGA architecture. Usually, the larger the sleep
transistor size, the smaller the delay is. In this section, we
perform device and architecture co-optimization to achieve
the best ED and area tradeoff. Although dual-Vt may change
the layout area due to extra diffusion well area, such change
depends on technology and is often very small. Therefore, in
this section, we assume that Vdd and Vt change does not affect
area.

For Homo-Vt and Hetero-Vt, because no power gating is
applied, we do not need to tune sleep transistor size. To achieve
the best ED-area tradeoff, we find out the hyper-architectures
with minimum product of energy, delay, and area (in short
AED), which are summarized in Table X. Compared to the
baseline, the min-AED hyper-architecture of Homo-Vt reduces
ED by 14.7% and area by 18.3%,7 and the min-AED hyper-
architecture of Hetero-Vt reduces ED by 18.4% and area by
23.3%. Figure 8 presents the chip-level ED and area tradeoff.
We prune inferior solutions with both ED and area larger than
any alternative solutions. From the figure, we see that, for the
classes without power gating, the min-ED hyper-architecture is
exactly the min-AED hyper-architecture. This is because that
when no power gating is applied, the larger the area, the more
leakage power is consumed. Therefore, the min-ED hyper-
architectures use less area than other hyper-architectures.

For Homo-Vt+G and Hetero-Vt+G with power gating, the
sleep transistor size has to be considered. Because only one
sleep transistor is used for one logic block, as illustrated
in Figure 2(d), we assume the 210X PMOS for the sleep
transistor with negligible area overhead. Moreover, we observe
that a 1X PMOS as the sleep transistor for one switch in
connection box (see the circuit in Figure 2(c)) provides good
performance, and any further increase of the sleep transistor
size cannot improve the performance much.

The sleep transistors for the switches in the routing box,
however, may affect delay greatly. We consider four sleep
transistor sizes: 2X, 4X, 7X, and 10X PMOS for a routing
switch. From the Figure 8, we find that device and architecture

7In our evluation, we assume that the area depends only on architecture
and but not device setting. Our experimental result shows that N = 12,
K = 4 is most area efficient architecture, this architecture reduces area by
23.6% compared to the baseline (N = 8, K = 4). The architecture N = 10,
K = 4 is the second area efficient architecture which reduces area by 18.3%
compared to the baseline.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 9

hyper-architecture.Class Vdd (V) CVt (V) IVt (V) (N, k) Energy (nJ) Delay (ns) ED (nJ· ns) ED Reduction % Normalized Area %
Baseline 0.9 0.30 0.30 (8,4) 1.20 23.5 28.2 - 100.00
Homo-Vt 1.0 0.30 0.30 (10,4) 1.37 17.5 24.1 14.5 81.90
Hetero-Vt 0.9 0.25 0.30 (12,4) 1.27 18.1 23.0 18.4 79.52

Homo-Vt+G 0.9 0.25 0.25 (12,4) 0.74 16.10 11.9 57.8 127.43
Hetero-Vt+G 0.8 0.25 0.20 (10,4) 0.65 17.30 11.2 60.3 126.19

TABLE IX
COMPARISON BETWEEN BASELINE AND MIN-ED HYPER-ARCHITECTURE IN Homo-Vt, Hetero-Vt, Homo-Vt+G, AND Hetero-Vt+G.

Vdd (V) CVt (V) IVt (V) (N,K) Sleep transistor size Normalized ED Normalized Area AED product AED reduction %
Baseline 0.9 0.30 0.30 (8,4) - 1 1 - -
Homo-Vt 1.0 0.30 0.30 (10,4) - 0.853 0.817 0.697 30.3
Hetero-Vt 0.9 0.25 0.30 (12,4) - 0.816 0.767 0.626 37.4

Homo-Vt+G 0.9 0.25 0.25 (12,4) 2 0.470 0.918 0.432 56.9
Hetero-Vt+G 0.9 0.25 0.20 (12,4) 2 0.450 0.918 0.413 58.7

TABLE X
MINIMUM ED-AREA PRODUCT HYPER-ARCHITECTURES FOR DIFFERENT CLASSES. ED, AREA, AND ED-AREA PRODUCT ARE NORMALIZED WITH

RESPECT TO THE BASELINE.

0.7

0.9

1.1

1.3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized ED

N
o

rm
a

li
ze

d
 a

re
a

Homo-Vt

Hetero-Vt

Homo-Vt+G

Hetero-Vt+G
Min AED

hyper-arch for

Homo-Vt+G

Min AED

hyper-arch for

Hetero-Vt+G

Min AED

hyper-arch for

Hetero-Vt

Min AED

hyper-arch for

Homo-Vt

Fig. 8. ED and area trade-off. ED and area are normalized with respect to
the baseline (N = 8, K = 4, Vdd = 0.9V , and Vt = 0.3V).

co-optimization can reduce ED and area simultaneously even
when power gating is applied. This is due to the fact that
tuning device setting and architecture offers a bigger solution
space to explore in chip level. 8 Table X summarizes the
minimum AED product hyper-architectures. Compared to the
baseline case, the minimum AED product hyper-architecture
of Homo-Vt+G reduces ED by 53.0% and area by 8.2% and
the minimum AED product hyper-architecture in Hetero-Vt+G
reduces ED by 55.0% and area by 8.2%.

E. Impact of utilization rate

In the previous part of this section, we assume fixed utiliza-
tion rate (0.5). In this subsection, we will further discuss the
impact of utilization rate on FPGA architecture evaluation. We
compare the min-ED and min-AED hyper-architectures under
three different utilization rates: 0.3, 0.5, and 0.8 in Tables
XI and XII. We see that the min-ED and min-AED hyper-
architectures under different utilization rates are the same.

8As discussed before, the most area efficient architectures (N = 12 and
K = 4) reduces area by about 20% compared to the baseline. The area
increase introduced by power gating leads to only about 15% area increase.
Therefore, for the minimum AED hyper-architecture of the power gating
classes consumes less area compared to the baseline.

Therefore, we conclude that utilization rate in practice does not
affect hyper-architecture evaluation. We guess that the reason
why the utilization rate does not affect hyper-architecture
evaluation is as follows: In our models the performance and
dynamic power of the circuit under different utilization rates
are the same, 9 and the only difference is leakage power. For
the classes with power gating, the leakage power is determined
by the active elements and the leakage power of the unused
circuit elements is negligible (as we can see from Table XI,
in classes Homo-Vt+G and Hetero-Vt+G, ED under different
utilization rate is very close). When no power gating is applied,
for given benchmark circuits, leakage power is the dominant
power component and changes inversely proportional to the
utilization rate. Therefore the relationship between the leakage
power of different hyper-architectures does not change with
respect to the change of the utilization rate.

F. Impact of interconnect structure

In the previous discussion, we always assume all the wire
segments span four logic blocks (i.e. length-4 interconnect
wires). In this section, we will compare two routing structures
to show the impact of routing structure on delay and power. We
compare a structure with uniform length-4 wire segments (in
short uniform-interconnect) and a routing structure with 60%
length-4 wire segments and 40% length-8 wire segments (in
short mixed-interconnect). The mixed-interconnect is optimal
for minimizing delay [29]. Tables XIII, XIV, and XV compare
the min delay, min energy and min ED hyper-architectures be-
tween the two routing structures, respectively. We see that the
min-delay hyper-architectures for both interconnect structures
are same. The min-energy and min-ED hyper-architectures for
the two routing structure have the same the device setting and
LUT size, but mixed-interconnect tends to use smaller cluster
size as the interconnect delay is reduced in mixed-interconnect.
We also see that uniform-interconnect has lower energy but
higher delay than mixed-interconnect. This is due to the fact
that mixed-interconnect applies length-8 wire-segments and

9We assume the placement and route is the same for different utilization
rate.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 10

Utilization 0.3 0.5 0.8
rate Vdd CVt IVt (N, k) ED Vdd CVt IVt (N, k) ED Vdd CVt IVt (N, k) ED

(V) (V) (V) (nJ· ns) (V) (V) (V) (nJ· ns) (V) (V) (V) (nJ· ns)
Homo-Vt 1.0 0.30 0.30 (10,4) 32.0 1.0 0.30 0.30 (10,4) 24.1 1.0 0.30 0.30 (10,4) 19.4
Hetero-Vt 0.9 0.25 0.30 (12,4) 31.5 0.9 0.25 0.30 (12,4) 23.0 0.9 0.25 0.30 (12,4) 18.1

Homo-Vt+G 0.9 0.25 0.25 (12,4) 12.3 0.9 0.25 0.25 (12,4) 11.9 0.9 0.25 0.25 (12,4) 11.8
Hetero-Vt+G 0.8 0.25 0.20 (10,4) 11.6 0.8 0.25 0.20 (10,4) 11.2 0.8 0.25 0.20 (10,4) 11.0

TABLE XI
MIN-ED HYPER-ARCHITECTURE UNDER DIFFERENT UTILIZATION RATES.

Utilization 0.3 0.5 0.8
rate Vdd CVt IVt (N, k) Sleep AED Vdd CVt IVt (N, k) Sleep AED Vdd CVt IVt (N, k) Sleep AED

(V) (V) (V) Tran (V) (V) (V) Tran (V) (V) (V) Tran
Homo-Vt 1.0 0.30 0.30 (10,4) - 0.649 1.0 0.30 0.30 (10,4) - 0.697 1.0 0.30 0.30 (10,4) - 0.698
Hetero-Vt 0.9 0.25 0.30 (12,4) - 0.637 0.9 0.25 0.30 (12,4) - 0.626 0.9 0.25 0.30 (12,4) - 0.617

Homo-Vt+G 0.9 0.25 0.25 (12,4) 2 0.330 0.9 0.25 0.25 (12,4) 2 0.432 0.9 0.25 0.25 (12,4) 2 0.533
Hetero-Vt+G 0.8 0.25 0.20 (10,4) 2 0.324 0.8 0.25 0.20 (10,4) 2 0.413 0.8 0.25 0.20 (10,4) 2 0.510

TABLE XII
MIN-AED HYPER-ARCHITECTURE UNDER DIFFERENT UTILIZATION RATES. NOTE: AED IS NORMALIZED WITH RESPECT TO THE BASELINE.

therefore a buffer with a larger size is used, which reduces
delay but increases power.

uniform-interconnect
hyper-architecture Vdd CVt Ivt (N,K) Energy Delay

Class (V) (V) (V) (nJ) (ns)
Homo-Vt 1.1 0.20 0.20 (6,7) 31.22 8.86
Hetero-Vt 1.1 0.20 0.20 (6,7) 31.22 8.86

Homo-Vt+G 1.1 0.20 0.20 (6,7) 15.98 9.45
Hetero-Vt+G 1.1 0.20 0.20 (6,7) 15.98 9.45

mixed-interconnect
Homo-Vt 1.1 0.20 0.20 (6,7) 35.56 8.42
Hetero-Vt 1.1 0.20 0.20 (6,7) 35.56 8.42

Homo-Vt+G 1.1 0.20 0.20 (6,7) 16.25 9.13
Hetero-Vt+G 1.1 0.20 0.20 (6,7) 16.25 9.13

TABLE XIII
MIN-DELAY HYPER-ARCHITECTURE UNDER DIFFERENT ROUTING

STRUCTURES.

uniform-interconnect
hyper-architecture Vdd CVt Ivt (N,K) Energy Delay

Class (V) (V) (V) (nJ) (ns)
Homo-Vt 0.8 0.35 0.35 (10,4) 0.942 59.2
Hetero-Vt 0.8 0.30 0.35 (12,4) 0.920 43.6

Homo-Vt+G 0.8 0.30 0.30 (12,4) 0.550 30.5
Hetero-Vt+G 0.8 0.30 0.25 (10,4) 0.549 24.3

mixed-interconnect
Homo-Vt 0.8 0.35 0.35 (8,4) 1.052 55.6
Hetero-Vt 0.8 0.35 0.35 (8,4) 1.052 55.6

Homo-Vt+G 0.8 0.30 0.30 (12,4) 0.610 29.3
Hetero-Vt+G 0.8 0.30 0.25 (8,4) 0.602 22.8

TABLE XIV
MIN-ENERGY HYPER-ARCHITECTURE UNDER DIFFERENT ROUTING

STRUCTURES.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have developed trace-based power and
performance evaluation (Ptrace) for FPGA. The one-time use
of placement, routing and cycle-accurate power simulation is
applied to collect the timing and power trace for a given
benchmark set and a given FPGA architecture. The trace can
then be re-used to calculate timing and power via closed-
form formulae for different device parameters and technology

uniform interconnect
hyper-architecture Vdd CVt Ivt (N,K) Energy Delay ED

Class (V) (V) (V) (nJ) (ns) (nJ·ns)
Homo-Vt 1.0 0.30 0.30 (10,4) 1.37 17.50 24.1
Hetero-Vt 0.9 0.25 0.30 (12,4) 1.27 18.10 23.0

Homo-Vt+G 0.9 0.25 0.25 (12,4) 0.74 16.10 11.9
Hetero-Vt+G 0.8 0.25 0.20 (10,4) 0.65 17.30 11.2

mixed-interconnect
Homo-Vt 1.0 0.30 0.30 (8,4) 1.51 17.00 25.7
Hetero-Vt 0.9 0.25 0.30 (12,4) 1.39 18.40 25.6

Homo-Vt+G 0.9 0.25 0.25 (8,4) 0.82 16.40 13.4
Hetero-Vt+G 0.8 0.25 0.20 (8,4) 0.74 16.67 12.3

TABLE XV
MIN-ED HYPER-ARCHITECTURE UNDER DIFFERENT ROUTING

STRUCTURES.

scaling. Ptrace is much faster, yet accurate compared to the
conventional evaluation based on placement and routing by
VPR [23] followed by cycle-accurate simulation (Psim) [5].

Using the trace-based estimation, we have performed device
(Vdd, Vt and sleep transistor size if power gating is applied)
and architecture (cluster and LUT size) co-optimizations for
low power FPGAs. We assume the ITRS [25] 70nm technol-
ogy and use the following baseline for comparison: Cluster
size of 8 and LUT size of 4 as in the Xilinx Virtex-II [24],
Vdd of 0.9v suggested by ITRS, Vt of 0.3v which is optimized
for min-ED (i.e., minimum energy delay product) with respect
to the above architecture and Vdd. Compared to the baseline
case, simultaneous optimization of FPGA architecture and
device reduces the min-ED by 14.7% and area by 18.3%
for FPGA using homogeneous-Vt for the logic blocks and
interconnects without power gating. Optimizing Vt separately
(i.e., heterogeneous-Vt) for the logic block and interconnect
reduces min-ED by 18.4% and area by 23.3%. Furthermore,
power gating unused logic and interconnect reduces the min-
ED by up to 55.0% and reduces area by 8.2%. Compared to the
classes without power gating, the min-ED hyper-architectures
of the classes with power gating have lower Vt. This is due to
the fact that, when power gating is applied, leakage power is
significantly reduced and therefore a lower Vt can be applied
to reduce delay.

We observe that min-ED hyper-architectures and min-AED

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 11

hyper-architectures for different utilization rates (between 30%
and 80%) are the same. Therefore, the utilization rate in prac-
tice does not affect the device and architecture co-optimization
result. Moreover, we also test two different routing struc-
tures, one with uniform length 4 wire segments (uniform-
interconnect) and the other with 60% length 4 wire segments
and 40% length 8 wire segments (mixed-interconnect). We
observe that the min-ED, min-energy and min-delay hyper-
architectures under two different interconnect structures are
similar, except that mix-interconnect tends to use slightly
smaller cluster size due to the reduced interconnect delay.

REFERENCES

[1] T. Tuan and B. Lai, “Leakage power analysis of a 90nm FPGA,” in
Proc. IEEE Custom Integrated Circuits Conf., 2003.

[2] E. Kusse and J. Rabaey, “Low-energy embedded FPGA structures,” in
Proc. Intl. Symp. Low Power Electronics and Design, pp. 155–160,
August 1998.

[3] V. Degalahal and T. Tuan, “Methodology for high level estimation
of FPGA power consumption,” in Proc. Asia South Pacific Design
Automation Conf., Jan 2005.

[4] K. Poon, A. Yan, and S. Wilton, “A flexible power model for FPGAs,”
in Proc. of 12th International conference on Field-Programmable Logic
and Applications, Sep 2002.

[5] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation for power-
efficient FPGAs,” in Proc. ACM Intl. Symp. Field-Programmable Gate
Arrays, Feb 2003.

[6] F. Li and L. He, “Power modeling and characteristics of field pro-
grammable gate arrays,” IEEE Trans. Computer-Aided Design of In-
tegrated Circuits and Systems, Oct. 2005.

[7] J. Lamoureux and S. J. Wilton, “On the interaction between power-aware
FPGA CAD algorithms,” in Proc. Intl. Conf. Computer-Aided Design,
pp. 701–708, November 2003.

[8] R. Mukherjee and S. O. Memik, “Power-driven design partitioning,” in
Proc. Intl. Conf. Field-Programmable Logic and its Application, August
2004.

[9] J. H. Anderson, F. N. Najm, and T. Tuan, “Active leakage power
optimization for FPGAs,” in Proc. ACM Intl. Symp. Field-Programmable
Gate Arrays, Februray 2004.

[10] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and
T. Tuan, “Reducing leakage energy in FPGAs using region-constrained
placement,” in Proc. ACM Intl. Symp. Field-Programmable Gate Arrays,
February 2004.

[11] Y. Lin, F. Li, and L. He, “Routing track duplication with fine-grained
power-gating for FPGA interconnect power reduction,” in Proc. Asia
South Pacific Design Automation Conf., Jan 2005.

[12] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using pre-defined
dual-vdd/dual-vt fabrics,” in Proc. ACM Intl. Symp. Field-Programmable
Gate Arrays, February 2004.

[13] F. Li, Y. Lin, and L. He, “FPGA power reduction using configurable
dual-vdd,” in Proc. Design Automation Conf., June 2004.

[14] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and
T. Tuan, “A dual-vdd low power FPGA architecture,” in Proc. Intl. Conf.
Field-Programmable Logic and its Application, August 2004.

[15] Fei Li, Yan Lin and Lei He, “Vdd programmability to reduce fpga inter-
connect power,” in Proc. Intl. Conf. Computer-Aided Design, November
2004.

[16] Jason H. Anderson and Farid N. Najm, “Low-power programmable
routing circuitry for FPGAs,” in Proc. Intl. Conf. Computer-Aided
Design, November 2004.

[17] S. Srinivasan, A. Gayasen, and T. Tuan, “Leakage control in fpga routing
fabric,” in Proc. Asia South Pacific Design Automation Conf., January
2005.

[18] A. Lodi, L. Ciccarelli, and R. Giansante, “Combining low-leakage
techniques for FPGA routing design,” in Proc. ACM Intl. Symp. Field-
Programmable Gate Arrays, Februray 2005.

[19] J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: The effect of logic functionality on area
efficiency,” IEEE Journal of Solid-State Circuits, 1990.

[20] S. Singh, J. Rose, P. Chow, and D. Lewis, “The effect of logic
block architecture on FPGA performance,” IEEE Journal of Solid-State
Circuits, 1992.

[21] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-
submicron FPGA performance and density,” in Proc. ACM Intl. Symp.
Field-Programmable Gate Arrays, pp. 3–12, Feb 2000.

[22] Y. Lin, F. Li and L. He, “Circuits and architectures for vdd pro-
grammable FPGAs,” in Proc. ACM Intl. Symp. Field-Programmable
Gate Arrays, Feb 2005.

[23] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, Feb 1999.

[24] Xilinx Corporation, “Virtex-II 1.5v platform FPGA complete data sheet,”
July 2002.

[25] International Technology Roadmap for Semiconductor in
http://public.itrs.net/, 2002.

[26] G. G. Lemieux and S. D. Brown, “A detailed router for allocating wire
segments in field-programmable gate arrays,” in Proceedings of the ACM
Physical Design Workshop, April 1993.

[27] J. Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: The effect of logic functionality on area
efficiency,” Proc. IEEE Int. Solid-State Circuits Conf., 1990.

[28] J. Kouloheris and A. E. Gamal, “FPGA area vs. cell granularity - lookup
tables and PLA cells,” in 1st ACM Workshop on FPGAs, berkeley, CA,
Feb 1992.

[29] David Lewis ect., “The stratix routing and logic architecture,” in Proc.
ACM Intl. Symp. Field-Programmable Gate Arrays, February 2003.

Lerong Cheng received the B.S. degree in electron-
ics and communication engineering from Zhongshan
University, Guangzhou, China in 2001 and the M.S.
degree in Electrical and Computer Engineering from
Portland State University in 2003. He is currently a
Ph.D. candidate in electrical engineering department
at UCLA.

His research interests include computer-aided de-
sign of VLSI circuits and systems, programmable
fabrics, low-power and high-performance designs,
and statistical timing analysis.

Fei Li received B.S. and M.S. degree in electrical
engineering from Fudan University in 1997 and
2000, respectively, and M.S. degree in computer
engineering from University of Wisconsin, Madison
in 2002, and Ph.D. degree in electrical engineering
from UCLA in 2005.

His research interests include computer-aided de-
sign of VLSI circuits and systems, programmable
device architecture and low-power design.

Yan Lin received the B.E. degree in automation
from Tsinghua University, Beijing, China in 2002
and the M.S. degree in electrical engineering from
University of California, Los Angeles (UCLA) in
2004. He is currently a Ph.D. candidate in electrical
engineering department at UCLA.

His research interests include computer-aided de-
sign of VLSI circuits and systems, programmable
fabrics, and low-power and high-performance de-
signs.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH YEAR 12

Phoebe Wong received the B.S. degree in 2002 and
the M.S. degree in 2005 from the University of Cali-
fornia, Los Angeles, both in Electrical Engineering.

She is currently working at Intel Corporation as a
design automation engineer.

Dr. Lei He is an associate professor at electrical
engineering department, UCLA, and was a faculty
member at University of Wisconsin, Madison be-
tween 1999 and 2001. He also held visiting or
consulting positions with Intel, Hewlett-Package,
Cadence, and Synopsys.

His research interests include VLSI circuits and
systems, and electronic design automation. He has
published over 130 technical papers and is a techni-
cal program committee member for a number of con-
ferences including Design Automation Conference,

International Conference on Computer-Aided Design, International Sympo-
sium on Low Power Electronics and Design, and International Symposium
on Field Programmable Gate Array.

Dr. He obtained Ph.D. degree in computer science from UCLA in 1999. He
was granted National Science Foundation CAREER award in 2000, UCLA
Chancellor’s faculty career development award (highest class) in 2003, IBM
Faculty Award in 2003, Northrop Grumman Excellence in Teaching award in
2005, and Best Paper Award in the 2006 International Symposium on Physical
Design.

