EE 201A

Fundamentals to Computer-Aided Design of VLSI Circuits and Systems

Instructor: Lei He
Email: LHE@ee.ucla.edu
Instructor Info

- Email: LHE@ee.ucla.edu
- Phone: 310-206-2037 (o) or 626-354-2381 (m)

- Office hours: MW 3-4, BH6731
 or email for appointments

- The best way to reach me:
 Email with EE201 in subject line
Course Prerequisites

- Official prerequisite
 - EE116B VLSI System Design
 - But mainly self-contained

- Knowledge to help you appreciate more
 - CS 180, Introduction to algorithms
 - EE 136, Introduction to engineering optimization techniques
EE201A Outline and Schedule

- Circuit platforms and models (2 weeks)
 - ASIC, FPGA, and uProcessor platforms
 - Timing, power and thermal modeling

- Basics of logic and physical design algorithms (2 weeks)
 - RTL synthesis and technology mapping
 - Partitioning, placement and routing for ASIC and FPGA

- Applications of FPGA (3 weeks)
 - RTL-based design for FPGA
 - Dynamic configuration of FPGA
 - Reliability and security of FPGA

- More synthesis and testing algorithms (3 weeks)
 - Logic optimization and layout optimization
 - Fault model, D algorithm and design for testing
Project Topics and Schedule

- Default projects (choose one by student):
 - Parallel programming of a routing algorithm
 - Implementing DSP algorithms on FPGA

- Advanced or customized topics:
 - System reliability study using FPGA emulators for uP or networking
 - Logic reliability metrics for soft errors
 - Anti-cloning methods for FPGA-based systems

- Project assigned 4th or 5th week, and due by the last day of the quarter
References for this Course

- No textbook required
- Class wiki web-site
 - http://eda.ee.ucla.edu/EE201A
- Selected papers leading journals and conferences
Grading Policy

- Homework (maybe small programming projects) 70%
- Final project 30%
Who should take this course

- It is another course
 - Discuss wide scope of knowledge
 - But research (presentation + project) on your own focus

- For students who are motivated to
 - Learn timing, power/thermal, DFM for system and ckt designs
 - Understand CAD better
 - Become a CAD professional
Related, 201C to be offered in Winter

- **Interconnect and timing modeling (3 weeks)**
 - Interconnect extraction
 - Delay modeling and model order reduction
 - Project 1 (model order reduction in Matlab)

- **On-chip timing and integrity (4 weeks)**
 - Stochastic static timing and noise analysis for logic and on-chip interconnects
 - Process variation, stochastic timing, power and noise analysis
 - Stochastic power and thermal integrity
 - Project 2 (stochastic modeling in Matlab)

- **Beyond-die signal and power integrity (3 weeks)**
 - Chip-package co-design with power integrity
 - TSV modeling for 3D IC
 - Noise analysis for high-speed signaling and other analog components