EE 201A

Fundamentals to Computer-Aided Design of VLSI Circuits and Systems

Instructor:Lei HeEmail:LHE@ee.ucla.edu

Instructor Info

Email: LHE@ee.ucla.edu
 Phone: 310-206-2037 (o) or 626-354-2381 (m)

n Office hours: MW 3-4, BH6731 u or email for appointments

n The best way to reach me:
 u Email with EE201 in subject line

Course Prerequisites

- n Official prerequisite
 u EE116B VLSI System Design
 u But mainly self-contained
- **n** Knowledge to help you appreciate more
 - u CS 180, Introduction to algorithms
 - **u EE 136, Introduction to engineering optimization techniques**

EE201A Outline and Schedule

- n Circuit platforms and models (2 weeks)
 - u ASIC, FPGA, and uProcessor platforms
 - **u** Timing, power and thermal modeling
- **n** Basics of logic and physical design algorithms (2 weeks)
 - **u** RTL synthesis and technology mapping
 - **u** Partitioning, placement and routing for ASIC and FPGA
- n Applications of FPGA (3 weeks)
 - **u RTL-based design for FPGA**
 - **u** Dynamic configuration of FPGA
 - **u** Reliability and security of FPGA
- n More synthesis and testing algorithms (3 weeks)
 - u Logic optimization and layout optimization
 - u Fault model, D algorithm and design for testing

Project Topics and Schedule

- **n** Default projects (choose one by student):
 - **u** Parallel programming of a routing algorithm
 - **u** Implementing DSP algorithms on FPGA
- n Advanced or customized topics:
 - A System reliability study using FPGA emulators for uP or networking
 - u Logic reliability metrics for soft errors
 - **u** Anti-cloning methods for FPGA-based systems
- Project assigned 4th or 5th week, and due by the last day of the quarter

References for this Course

- No textbook required
- Class wiki web-site
 - http://eda.ee.ucla.edu/EE201A

Selected papers leading journals and conferences

Grading Policy

n Homework (maybe small programming projects) 70%

n Final project 30%

Who should take this course

- **n** It is another course
 - **u** Discuss wide scope of knowledge
 - u But research (presentation + project) on your own focus
- **n** For students who are motivated to
 - u Learn timing, power/thermal, DFM for system and ckt designs
 - **u** Understand CAD better
 - **u** Become a CAD professional

Related, 201C to be offered in Winter

- **n** Interconnect and timing modeling (3 weeks)
 - **u** Interconnect extraction
 - **u** Delay modeling and model order reduction
 - **u** Project 1 (model order reduction in Matlab)
- **n** On-chip timing and integrity (4 weeks)
 - **u** Stochastic static timing and noise analysis for logic and on-chip interconnects
 - **u** Process variation, stochastic timing, power and noise analysis
 - **u** Stochastic power and thermal integrity
 - u Project 2 (stochastic modeling in Matlab)
- n Beyond-die signal and power integrity (3 weeks)
 - u Chip-package co-design with power integrity
 - **u** TSV modeling for 3D IC
 - u Noise analysis for high-speed signaling and other analog components