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Abstract— Memory circuits have become important components
in today’s IC designs which demands extremely high integration
density and reliability under process variations. The most challeng-
ing task is how to accurately estimate the extremely small failure
probability of memory circuits where the circuit failure is a “rare
event”. Classic importance sampling has been widely recognized to
be inaccurate and unreliable in high dimensions. To address this
issue, we propose a fast statistical analysis to estimate the proba-
bility of rare events in high dimensions and prove that the estima-
tion is always bounded. This methodology has been successfully
applied to the failure analysis of memory circuits with hundreds
of variables, which was considered to be very intractable before.
To the best of our knowledge, this is the first work that success-
fully solves high dimensional “rare event” problems without using
expensive Monte Carlo and classic importance sampling methods.
Experiments on a 54-dimensional SRAM cell circuit show that the
proposed approach achieves 1150x speedup over Monte Carlo with-
out compromising any accuracy. It also outperforms the classifi-
cation based method (e.g., Statistical Blockade) by 204x and exist-
ing importance sampling method (e.g., Spherical Sampling) by 5x.
On another 117-dimension circuit, the proposed approach yields
364x speedup over Monte Carlo while existing importance sampling
methods completely fail to provide reasonable accuracy.

I. INTRODUCTION

Memory circuits (e.g., SRAM bit-cell, sense amplifier, delay chain,
etc.) need to be replicated millions or even billions of times to achieve
extremely high integration density in a smaller footprint, where the
cutting-edge process technology is demanded. In this case, the strin-
gent yield requirement of memory circuits can be translated into an
extremely small failure probability of each component circuit, thereby
making the circuit failure a “rare-event” [1].

In general, the probability estimation of “rare-event” is usually ana-
lytical intractable due to high complexity of memory circuits, therefore,
sampling methods must be used. The most straightforward approach
is the Monte Carlo (MC) method, which repeatedly draws samples and
evaluates circuit performance with transistor-level SPICE simulation.
However, MC is extremely time-consuming for rare-event estimation,
because millions or even billions of samples are needed to capture one
single failure.

To mitigate the complexity issue of the MC method, many statistical
methodologies have been developed in past few years [2, 3, 4, 5, 6, 7, 8]
which can be categorized into two groups:
(1) Classification: the approach in [2] makes use of a “classifier” to
“block” those Monte Carlo samples that are unlikely to cause failures
and simulates the remaining samples. However, this method has two
limitations: first, a perfectly accurate classifier is usually unavailable.
A safety margin is used in [2] to prevent the classifier error. Second,
the imperfect classifier can easily incur large error beyond the safety

margin for circuits with irregular failure region and strongly nonlinear
behavior, which typically cannot be detected by the approach in [2].
(2) Importance Sampling: several approaches in [3, 4, 5, 6, 7] had
been developed to construct a new “proposed” sampling distribution
under which a “rare event” becomes “less rare” so that more failures
can be easily captured. The critical issue is how to build an optimal
proposed sampling distribution. Previous work investigated different
approaches. For example, [3] mixes a uniform distribution, the original
sampling distribution and a “shifted” distribution centering around the
failure region. The approaches in [4, 5] simply shift the sampling dis-
tribution towards the point of failure region with a minimum 𝐿2-norm.
The work in [6] uses “particle filtering” to tilt more samples towards the
failure region. The approach in [7] approximates the optimal sampling
distribution with a parameterized sampling distribution by minimizing
the Kullback-Leibler (KL) distance between them. These importance
sampling based methods are plagued by the curse of high dimension-
ality [9, 10, 11]. In general, they can only be used in low-dimensional
problems (e.g., those with a scope of 6-12 variables) but become very
untrustworthy for high-dimensional problems.
Clearly, most of existing approaches can successfully be applied to
low-dimensional problems with a few random variables but, in gen-
eral, perform poorly in high dimensions. Therefore, an effective and
low-complexity approach is still urgently needed for failure analysis of
memory circuits in high dimensions.

In this paper, we proposed a novel statistical algorithm to efficiently
estimate the failure probability of memory circuits in high dimension,
where tens or hundreds of random variables are present. In details, the
proposed methodology first constructs a new subset of the sampling
space that dominates the failure region for memory circuits and can be
efficiently estimated with a few samples. Then, the failure probability
of memory circuits can be evaluated by the product rule of conditional
probability within this sampling subset space. More importantly, the
estimation from the proposed method is proved to be always bounded in
high dimensions. Experiments on a 54-dimensional SRAM cell circuit
show that the proposed approach achieves 1150X speedup over Monte
Carlo without compromising any accuracy. It is also 204X faster than
the classification based method (e.g., Statistical Blockade [2]) by and
5X faster than existing importance sampling method (e.g., Spherical
Sampling [4, 5]). On another 117-dimension circuit, the classification
based method fails to block “unlikely to fail” samples, and Spherical
Sampling [4, 5] method completely fails to provide reasonable accuracy.
Contrastingly, the proposed approach yields accurate result with 364X
speedup over Monte Carlo.

The rest of this paper is organized as follows. In Section 2, we pro-
vide the necessary background on importance sampling and revisit the
reasons for its failure in high dimensions. Section 3 describes the tech-
niques underpinning the proposed algorithm in detail. The experiments
are provided in Section 4 to validate the accuracy and efficiency of pro-
posed method. This paper is concluded in Section 5.
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II. BACKGROUND
A. Formulation of Probability Estimation

Let 𝑓(𝑋) be a probability density function (PDF) for a random vari-
able 𝑋 (e.g., any process or electronic variable parameters) which is
the input of a measurement process as shown in (1); the output 𝑌 is an
observation (e.g., voltage, amplitude, period, etc.) with input 𝑋:

𝑋︸︷︷︸
variable

⇒ Measurement, SPICE, etc. ⇒ 𝑌︸︷︷︸
observation

(1)

Usually, it is of great interest to estimate the probability of 𝑌 from
a small subset 𝒮 of the entire sampling space. For example, a small
subset is the “failure region” for SRAM design and includes all failed
samples where performance constraints cannot be satisfied. Therefore,
the probability 𝑝(𝑌 ∈ 𝒮) can be estimated as:

𝑝(𝑌 ∈ 𝒮) =
∫

𝐼(𝑋) ⋅ 𝑓(𝑋)𝑑𝑋. (2)

𝐼(𝑋) =

{
0 if 𝑌 /∈ 𝒮
1 if 𝑌 ∈ 𝒮

where 𝑌 is the observation/performance with the input variable 𝑋 and
the indicator function 𝐼(⋅) identifies whether 𝑌 ∈ 𝒮 or not. Note that
the integral in equation (3) is intractable because the analytical formula
of 𝐼(𝑋) is unavailable. Therefore, sampling based method must be
used. For example, the MC method enumerates as many samples of
𝑋 as possible (e.g., 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛) according to 𝑓(𝑋) and evaluates their
indicator function values to estimate 𝑝(𝑌 ∈ 𝒮) as:

𝑝(𝑌 ∈ 𝒮) = 1

𝑛

𝑛∑
𝑖=1

𝐼(𝑥𝑖)
𝑎.𝑠.
𝑛→+∞−−−−−→ 𝑝(𝑌 ∈ 𝒮). (3)

Here 𝑝(𝑋 ∈ 𝒮) is an unbiased estimate from sampling method and can
be very close to 𝑝(𝑋 ∈ 𝒮) with a large number of samples.

B. Importance Sampling (IS)
When 𝑌 ∈ 𝒮 is a rare event, the MC method becomes extremely

inefficient because most 𝐼(𝑥𝑖) are zeros. Millions or billions of sam-
ples of 𝑋 are needed to capture only one failed sample from the failure
region 𝒮.

To deal with this issue, the importance sampling (IS) has been in-
troduced to sample from a “proposed” sampling distribution 𝑔(𝑋) that
tilts towards 𝒮 where a rare-event becomes more likely to happen:

𝑝𝐼𝑆(𝑌 ∈ 𝒮) =
∫

𝐼(𝑋) ⋅ 𝑓(𝑋)

𝑔(𝑋)
⋅ 𝑔(𝑋)𝑑𝑋

=

∫
𝐼(𝑋) ⋅ 𝑤(𝑋) ⋅ 𝑔(𝑋)𝑑𝑋. (4)

Here, 𝑤(𝑋) is the “likelihood ratio” or the weight for each sample
of 𝑋 . 𝑤(𝑋) compensates for the discrepancy between 𝑓(𝑋) and 𝑔(𝑋)
and unbiases the probability estimation under 𝑔(𝑋). Sampling based
methods can be used to evaluate above integral as:

𝑝𝐼𝑆(𝑌 ∈ 𝒮) = 1

𝑛

𝑛∑
𝑗=1

𝑤(�̃�𝑗) ⋅ 𝐼(�̃�𝑗)
𝑎.𝑠.
𝑛→+∞−−−−−→ 𝑝(𝑌 ∈ 𝒮). (5)

�̃�𝑗 (𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛) follows the “proposed” sampling distribution 𝑔(𝑋)
rather than the original distribution 𝑓(𝑋), because more rare event sam-
ples in the subset 𝒮 can be easily chosen under the distribution 𝑔(𝑋).

Theoretically, 𝑝𝐼𝑆(𝑌 ∈ 𝒮) is consistent with 𝑝(𝑌 ∈ 𝒮) in (3) if
supp(𝑔(𝑋)) ⊃ supp(𝐼(𝑋) ⋅ 𝑓(𝑋)), where supp(⋅) denotes the sup-
port of a probabilistic distribution.

C. Failure Analysis of Importance Sampling
While importance sampling is, in principle, mathematically correct,

the degeneration or collapse of the likelihood ratios leads to the failure
of importance sampling in high dimensions as discussed in [10, 11].

Let us consider a classical case, as shown in Fig. 1, where 𝑓(𝑋) is
the “original” sampling distribution and 𝑔(𝑋) is the “proposed” sam-
pling distribution. The small circles with the same size within 𝑔(𝑋)

are samples drawn from 𝑔(𝑋). In the bottom of Fig. 1, a few circles
with different sizes represent the illustrative scales of the likelihood ra-
tios corresponding to the samples on top of them. Clearly, if 𝑔(𝑋) has
thinner tails than 𝑓(𝑋), the likelihood ratios 𝑤(𝑋) = 𝑓(𝑋)/𝑔(𝑋) ap-
proach infinity in the tails of 𝑔(𝑋). Hence, the likelihood ratios vary
dramatically and have extremely large variance that leads to unstable
probability estimate.

f(X) g(X) 

Scale Illustration of Likelihood Ratios 

Fig. 1. The scale illustration of likelihood ratios in importance sampling.

Moreover, the reason for the collapse of likelihood ratio can be ex-
plained from another perspective: when importance sampling shifts
𝑔(𝑋) towards the rare-event region that is typically in the tails of 𝑓(𝑋),
𝑓(𝑋) and 𝑔(𝑋) become mutually singular and have “disjoint” support
[10]. Therefore, IS fails to retain its accuracy.

This collapse issue of likelihood ratios becomes much worse in high
dimensions because 𝑤(𝑋) is a product of probabilities for multiple pa-
rameters and consequently approaches infinity more quickly.

III. PROPOSED METHOD

A. Algorithm Overview
We consider a small subset 𝒮 as the failure region in SRAM de-

sign under the given performance constraint (e.g., the performance of
SRAM circuit 𝑌 should be greater than certain performance threshold
𝑡𝑐). Hence the subset 𝒮 = {𝑌 ∣𝑌 ≥ 𝑡𝑐} in Fig. 2 contains all failed
samples that are “rare events”.

The basic idea of the proposed algorithm is to construct a new subset
𝒯 with a new threshold 𝑡 (e.g., 𝑡 = 0.99-quantile point). This new
subset 𝒯 = {𝑌 ∣𝑌 ≥ 𝑡} includes “non-rare” events and dominates the
“rare event” subset 𝒮 (e.g., supp(𝒯 ) ⊃ supp(𝒮)).

tct

Y

Fig. 2. Basic idea in proposed algorithm. (Noted that 𝒯 = {𝑌 ∣𝑌 ≥ 𝑡}
contains 𝒮 = {𝑌 ∣𝑌 ≥ 𝑡𝑐}).

In this way, the failure probability of SRAM design can be estimated
by a product rule from the probability theory [12]:

𝑃 (𝑌 ≥ 𝑡𝑐) = 𝑃 (𝑌 ≥ 𝑡) ⋅ 𝑃 (𝑌 ≥ 𝑡𝑐∣𝑌 ≥ 𝑡). (6)

The proposed algorithm has two stages and can be illustrated with
Fig. 3:

1) Initial Sampling with MC: This step aims to evaluate the prob-
ability 𝑃 (𝑌 ∈ 𝒯 ) = 𝑃 (𝑌 ≥ 𝑡) where 𝑡 is the threshold, such as
𝑡 = 0.99-quantile point shown in the left of Fig. 3. Since the samples
in 𝒯 are “non-rare” events, this evaluation needs only a few samples
using standard MC method.

2) Conditional Probability Estimation: The most challenging task
is to efficiently evaluate the conditional probability 𝑃 (𝑌 ≥ 𝑡𝑐∣𝑌 ≥ 𝑡)
where sampling method must be used. To expedite the convergence rate
of estimation, a “proposed” sampling distribution 𝑔(𝑋) that is close
to the failure region shall be constructed by shifting and reshaping the
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f(X2) 

Threshold t 
(0.99-quantile) 

f(X1) 

Failure Region 

Y 

Y is an observation with input X 

X2 

Y 

Failure Region 

1( )g X

2)(g XX2 

Step1: Estimate P(Y>= t) using MC Step2: Calculate conditional 
probability P(Y>= tc | Y>= t) 

Threshold t Performance 
Constraint tc 

Y>= tc 

Y>= t 

X1 X1 

Fig. 3. Overall flow in proposed algorithm. (Noted that 𝒯 = {𝑌 ∣𝑌 ≥ 𝑡}
contains 𝒮 = {𝑌 ∣𝑌 ≥ 𝑡𝑐}).

Algorithm 1 Overall Algorithm
Input: random variables 𝑋 with sampling distributions 𝑓(𝑋) and per-
formance constraints 𝑌 ≥ 𝑡𝑐.
Output: the estimation of failure probability 𝑝𝐼𝑆(𝑌 ≥ 𝑡𝑐).

1: /* 1: Initial Sampling with MC */
2: Use few MC samples to find the threshold value 𝑡 of performance

(e.g., t = 0.99-quantile point).
3: Run standard Monte Carlo method to calculate 𝑃𝑀𝐶(𝑌 ≥ 𝑡) with

certain accuracy level.
4: /* 2: Conditional Probability Calculation */
5: Shift the original sampling distribution 𝑓(𝑋) towards the failure

region.
6: Reshape the shifted 𝑓(𝑋) by changing its standard deviation to

construct 𝑔(𝑋).
7: Generate samples from 𝑔(𝑋) and evaluate conditional probability

𝑃 (𝑌 ≥ 𝑡𝑐∣𝑌 ≥ 𝑡).
8: /* 3: Failure Probability Estimation */
9: Solve for the failure probability 𝑝𝐼𝑆(𝑌 ≥ 𝑡) as

𝑃𝐼𝑆(𝑌 ≥ 𝑡𝑐) = 𝑃𝑀𝐶(𝑌 ≥ 𝑡) ⋅ 𝑃 (𝑌 ≥ 𝑡𝑐∣𝑌 ≥ 𝑡).

“original” sampling distribution (shown in the right of Fig. 3). More
details will be discussed in the following section.

The overall algorithm flow is described in Algorithm(1). There are
several issues that need to be resolved: 1) It is, at the moment, unclear
how to shift and reshape the original sampling distribution 𝑓(𝑋) in
order to build 𝑔(𝑋); 2) With the proposed sampling distribution 𝑔(𝑋),
how to calculate the conditional probability; 3) It is of great interest to
study whether the estimations of proposed algorithm is always bounded
or not.

The following sections discuss how we solve these issues.

B. Shift and Reshape Sampling Distribution
B.1 Mean-Shift Vector Selection
Mean-shift is a typical way to move the sampling distribution towards
the failure region where the failed samples are most likely to happen in
previous works [3, 4, 5, 6, 7]. The key is to find the mean-shift vector
for the original sampling distributions 𝑓(𝑋).

To this end, we propose to shift 𝑓(𝑋) towards a “non-rare” subset
𝒯 = {𝑌 ∣𝑌 ≥ 𝑡}, because our target is to evaluate the conditional
probability 𝑃 (𝑌 ≥ 𝑡𝑐∣𝑌 ≥ 𝑡) around the subset 𝒯 . More importantly,
as 𝒯 is usually not far away from the mean of 𝑓(𝑋), the shifted dis-
tribution shares almost the same support with 𝑓(𝑋) so as to avoid the
“disjoint support” issue.

In addition, we adopt the insights from [7] to find a close-to-optimal
mean-shift vector in this work. Let us consider a 1-D problem as an

example. The algorithm in [7] starts with an initial parameterized distri-
bution 𝑓(𝑋, �̂�) and tries to update the mean value iteratively to achieve
a close-to-optimal sampling distribution 𝑓∗(𝑋,𝜇∗) by an analytic for-
mula:

𝜇∗ =

∑𝑁
𝑖=1 𝐼(𝑥𝑖) ⋅ 𝑤(𝑥𝑖) ⋅ 𝑥𝑖∑𝑁

𝑖=1 𝐼(𝑥𝑖) ⋅ 𝑤(𝑥𝑖)
. (7)

Here 𝑥𝑖 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁) are samples drawn from 𝑓(𝑋, �̂�) and 𝑤(𝑥𝑖)
are their likelihood ratios as 𝑤(𝑥𝑖) = 𝑓(𝑥𝑖)/𝑓(𝑥𝑖, �̂�).

Intuitively, the updated mean value 𝜇∗ can be viewed as the coordi-
nates of the centroid point in the failure region where the failed samples
are most likely to happen. This interesting finding becomes more ob-
vious if 𝑓(𝑋, �̂�) equals 𝑓(𝑋) and all likelihood ratios take on value 1.
Hence, 𝜇∗ is:

𝜇∗ =

∑𝑁
𝑖=1 𝐼(𝑥𝑖) ⋅ 𝑥𝑖∑𝑁

𝑖=1 𝐼(𝑥𝑖)
. (8)

Therefore, our mean-shift method tries to shift the sampling distri-
bution towards the “centroid point” of the subset 𝒯 = {𝑌 ∣𝑌 ≥ 𝑡},
which can be evaluated with available MC samples from the first step
in Algorithm (1) and requires no extra sampling/simulation cost.

B.2 Standard Deviation Selection
Next, it is desired to reshape the shifted sampling distribution around
the centroid of subset 𝒯 . In particular, the standard deviation for the
proposed sampling distribution 𝑔(𝑋) must be properly chosen to reach
the failure region 𝒮 = {𝑌 ∣𝑌 ≥ 𝑡𝑐}, because the shifted and reshaped
sampling distribution should dominate or completely cover the “rare-
event” region 𝒮.

As an illustration, let us consider a 2-D problem in Fig. 4. The prob-
lem now becomes how to choose the standard deviation of the proposed
sampling distribution 𝑔(𝑋) to obtain the samples in the “rare-event”
region 𝒮 = {𝑌 ∣𝑌 ≥ 𝑡𝑐}.

X2

X1

Centroid of Y>=t

Centroid of Y>=tc

dX1

dX2

Fig. 4. The distance between centroid points of two subsets along each
parameter axis.

The proposed algorithm first approximates the centroid point of
𝒮 = {𝑌 ∣𝑌 ≥ 𝑡𝑐} using uniformly-distributed samples and then cal-
culates the distance between these two centroid points along each pa-
rameter axis (e.g., 𝑑𝑋1 and 𝑑𝑋2 shown in Fig.4). Then, we choose
𝑚𝑎𝑥(𝑑𝑋𝑖 , 𝜎(0,𝑋𝑖)) as the standard deviation of 𝑔(𝑋𝑖) for the variable
𝑋𝑖, where 𝜎(0,𝑋𝑖) is the original standard deviation of 𝑓(𝑋𝑖). This
choice can be intuitively explained as follows:

∙ 𝑑𝑋𝑖 > 𝜎(0,𝑋𝑖): the failure region 𝒮 is very far away from the
subset 𝒯 , therefore, the larger value 𝑑𝑋𝑖 is used to extend the
range of 𝑔(𝑋𝑖) and obtain the rare-event samples in the failure
region. In the meantime, 𝑔(𝑋𝑖) has almost the same supports with
𝑓(𝑋𝑖) because its mean position locates at the centroid point of
𝒯 and is not far away from 𝑓(𝑋𝑖).

∙ 𝑑𝑋𝑖 < 𝜎(0,𝑋𝑖): Suppose the smaller one, 𝑑𝑋𝑖 , is chosen as the
standard deviation of 𝑔(𝑋𝑖), the proposed sampling distribution
𝑔(𝑋) will have much smaller sampling space, thereby, making it
fail to keep the same supports with 𝑓(𝑋𝑖) and suffer from “dis-
joint supports” issue. The proposed algorithm chooses 𝜎(0,𝑋𝑖) as
the standard deviation of 𝑔(𝑋𝑖) in this case.

C. Conditional Probability Calcualtion
With the proposed sampling distribution 𝑔(𝑋), it is desired to effi-

ciently estimate the conditional probability in Algorithm(1). We can
start with the product rule in the probability theory [12]:

𝑃 (𝑌 ≥ 𝑡𝑐∣𝑌 ≥ 𝑡) =
𝑃 (𝑌 ⩾ 𝑡𝑐, 𝑌 ⩾ 𝑡)

𝑃 (𝑌 ⩾ 𝑡)
. (9)
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In addition, when samples 𝑥𝑖 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁) are generated from
𝑔(𝑋), both 𝑃 (𝑌 ⩾ 𝑡𝑐) and 𝑃 (𝑌 ⩾ 𝑡) can be estimated mathematically
with the indictor function and likelihood ratios. Thus, the equation (9)
becomes:

𝑃𝑀𝐼𝑆(𝑌 ≥ 𝑡𝑐∣𝑌 ≥ 𝑡) =
𝑃 (𝑌 ⩾ 𝑡𝑐)

𝑃 (𝑌 ⩾ 𝑡)

=
��
1
𝑁

𝑁∑
𝑖=1

𝑤(𝑥𝑖) ⋅ 𝐼{𝑌 ⩾𝑡𝑐}(𝑥𝑖)

��
1
𝑁

𝑁∑
𝑖=1

𝑤(𝑥𝑖) ⋅ 𝐼{𝑌 ⩾𝑡}(𝑥𝑖)

. (10)

where 𝐼{𝑌 ⩾𝑡𝑐}(⋅) and 𝐼{𝑌 ⩾𝑡}(⋅) are indicator functions for subsets
𝑌 ≥ 𝑡𝑐 and 𝑌 ≥ 𝑡, respectively. 𝑤(𝑥𝑖) are likelihood ratios for these
samples. In this way, the conditional probability can be efficiently eval-
uated under proposed sampling distribution 𝑔(𝑋).

D. Boundedness Analysis

D.1 Importance Sampling
Let us first investigate the existing importance sampling and assume
samples 𝑥𝑗 (𝑗 = 1, ⋅ ⋅ ⋅ ,𝑀) are generated from the proposed sampling
distribution 𝑔(𝑋).

We find the upper bound of probability estimate from the conven-
tional importance sampling according to Boole’s inequality (also known
as the union bound from probability theory [12]) as:

𝑃 (𝑌 ⩾ 𝑡𝑐) = 𝑃𝑓 (

𝑀∑
𝑗=1

𝐼{𝑌 ⩾𝑡𝑐}(𝑥𝑗)) ⩽
𝑀∑
𝑗=1

𝑃𝑓 (𝑥𝑗) ⋅ 𝐼{𝑌 ⩾𝑡𝑐}(𝑥𝑗)

=

𝑀∑
𝑗=1

𝑤(𝑥𝑗) ⋅ 𝐼{𝑌 ⩾𝑡𝑐}(𝑥𝑗). (11)

In 11 𝑃𝑓 stands for the probability estimation under sampling dis-
tribution 𝑓(𝑋). As discussed in [10, 11], the likelihood ratios 𝑤(𝑥𝑗)
can vary dramatically in high dimension and be any random quanti-
ties. Therefore, the union bound of the estimation 𝑃 (𝑌 ⩾ 𝑡𝑐) in (11)
approaches infinity and importance sampling becomes unreliable and
untrustworthy.

D.2 Proposed Algorithm
The proposed algorithm constructs a subset 𝒯 = {𝑌 ∣𝑌 ≥ 𝑡} that dom-
inates the failure region 𝒮 = {𝑌 ∣𝑌 ≥ 𝑡𝑐} (i.e., 𝒯 ⊃ 𝒮). Therefore,
the upper bound of conditional probability can be derived as:

𝑃 (𝑌 ⩾ 𝑡𝑐∣𝑌 ⩾ 𝑡) =
𝑃 (𝑌 ⩾ 𝑡𝑐)

𝑃 (𝑌 ⩾ 𝑡)

=

𝑁∑
𝑗=1

𝑤(𝑥𝑗) ⋅ 𝐼{𝑌 ⩾𝑡𝑐}(𝑥𝑗)

𝑁∑
𝑗=1

𝑤(𝑥𝑗) ⋅ 𝐼{𝑌 ⩾𝑡}(𝑥𝑗)

⩽ 1. (12)

Note that no matter how likelihood ratios 𝑤(𝑥𝑗) vary, the same like-
lihood ratios for samples in the failure region 𝒮 = {𝑌 ∣𝑌 ≥ 𝑡𝑐} would
appear in both numerator and denominator in (12) if and only if the
calculations of both 𝑃 (𝑌 ⩾ 𝑡𝑐) and 𝑃 (𝑌 ⩾ 𝑡) utilize the same set of
samples 𝑥𝑗 (𝑗 = 1, ⋅ ⋅ ⋅ ,𝑀) drawn from 𝑔(𝑋). Clearly, the conditional
probability estimation of proposed algorithm is always bounded by the
upper bound 1. Thereby, the propose algorithm can reliably provide
bounded estimation results.

IV. EXPERIMENTAL RESULTS

We investigate its performance of the proposed algorithm for failure
analysis of memory circuits (e.g., SRAM bit-cell and sense amplifier)
in this section. All experiments are performed using MATLAB and
Hspice with BSIM4 transistor model. The proposed algorithm is named
as HDIS (high-dimensional importance sampling) in this section. In
addition, Monte Carlo (MC), statistical blockade (SB)[2], and spherical
sampling (SS) [4, 5] have been implemented for comparison purpose.

TABLE I
PROCESS PARAMETERS OF MOSFETS.

Variable Name 𝜎/𝜇 unit
Flat-band Voltage (𝑉𝑓𝑏) 0.1 𝑉
Gate Oxide Thickness (𝑡𝑜𝑥) 0.05 𝑚

Mobility (𝜇0) 0.1 𝑚2/𝑉 𝑠

Doping concentration at depletion (𝑁𝑑𝑒𝑝) 0.1 𝑐𝑚−3

Channel-length offset (Δ𝐿) 0.05 𝑚
Channel-width offset (Δ𝑊 ) 0.05 𝑚

Source/drain sheet resistance (𝑅𝑠ℎ) 0.1 𝑂ℎ𝑚/𝑚𝑚2

Source-gate overlap unit capacitance (𝐶𝑔𝑠𝑜) 0.1 𝐹/𝑚
Drain-gate overlap unit capacitance (𝐶𝑔𝑑𝑜) 0.1 𝐹/𝑚

A. SRAM Circuit and Variation Modeling
A functional diagram of SRAM circuit with one bit-cell column is

shown in Fig. 5, which consists of a decoder, bit-cells, a sense amplifier
and a delay chain [13]. During the reading operation: the bit-cells store
the data in forms of ‘0’ or ‘1’; the decoder generates an address of a
specific bit-cell and releases a read enable signal. Therefore, the chosen
bit-cell starts to discharge the bit-lines (i.e., the lines that connect to
all bit-cells) to produce a voltage difference between two bit-lines. the
sense amplifier reads out the stored data by capturing and magnifying
the voltage difference on bit-lines.

Decoder

bit-cellbit-cellSense
Amplifier

Delay Chain

O
utput

BL

BL

WL
Fig. 5. Functional diagram of an SRAM circuit.

The process variations are introduced into each transistor of SRAM
circuit, which are modeled by 9 process parameters shown in Table (I).
The parameters are physically independent [14] and can be considered
to be Gaussian random variables. Note that the threshold voltage 𝑉𝑡ℎ is
not a process parameter and depends on 𝑉𝑓𝑏, 𝑡𝑜𝑥, Δ𝐿 and Δ𝑊 through
related effects [14].

B. SRAM Cell with Reading Failure
A typical 6-transistor SRAM bit-cell is shown in Fig. 6: 𝑀𝑛2 and

𝑀𝑛4 control the accessing of the cell; the remaining four transistors
form two inverters and use two stable states (either ‘0’ or ‘1’) to store
the data in this memory cell. The reading access failure happens when
the voltage difference between 𝐵𝐿 and 𝐵𝐿 is too small to be sensed by
the sense amplifier at the end of reading operation [1].

Q
Q

WL

BL BL

Vdd

Mn1

Mn2

Mn3

Mn4

Mp5 Mp6

WL

Fig. 6. The schematic of the 6T SRAM cell.

We perform different methods (MC, SS[5], SB[2], proposed) on this
SRAM bit-cell example to predict the reading failure probability under
process variations and the comparison results are shown in Table II.

B.1 Accuracy Comparison
At a first glance, we would be very surprised to find that SS[5] method
based on conventional importance sampling framework can provide ac-
curate failure rate predictions in this 54-dim problem!
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TABLE II
COMPARISON FOR SRAM BIT-CELL ANALYSIS WITH 90% TARGET ACCURACY AND CONFIDENCE LEVEL.

Monte Carlo Spherical Sampling Statistical Blockade Proposed method
(MC) (SS)[5] (SB)[2] (HDIS)

failure probability 2.413E-05 (0%) 2.8415E-05 (+17.7%) 2.7248e-05 (+12.9%) 2.4949E-05 (+3.39%)
#sim. runs 4.6e+6 (1150X) 2e+4 (5X) 8.16e+5 (204X) 4e+3 (1X)

However, this comparison cannot allow us to reach that conclusion,
because this SRAM bit-cell example is a “pseudo” high-dimensional
problem for two-fold reasons: (1) during the reading operation, not all
transistors are active. In fact, both 𝑀𝑝5 and 𝑀𝑛3 are shut off, there-
fore, the process variations on these two transistors have no effect on
discharge behavior of bit-lines at all; (2) without loss of generality, as-
suming 𝐵𝐿 = ‘0’ and 𝐵𝐿=‘1’, the discharge current flows from 𝐵𝐿 to
the ground through 𝑀𝑛2 and 𝑀𝑛1 so that to pull down the voltage of
𝐵𝐿. As such, the process variations in 𝑀𝑛2 and 𝑀𝑛1 have more sig-
nificant effects on the discharge behavior of bit-lines and can potentially
mask the variation effects in 𝑀𝑝6 and 𝑀𝑛4. In this way, there are only
18 “effective” variable parameters, which suggests that this example is
a problem with modest dimension.

When compared with MC results, the proposed method provides the
most accurate failure probability estimation with only 3.39% relative
error, while the estimations from SS[5] and SB[2] have more than 10%
relative error.

B.2 Efficiency Comparison
From Table II we also compare the efficiency of these methods: MC
is very time-consuming and requires nearly 4.6 millions transistor-level
SPICE simulations; SB[2] can provide 6X complexity reduction by
screening out and simulating those “most-likely-to-fail”samples; SS[5]
method is made more efficient (230X speedup over MC) by better
choosing failed samples using importance sampling algorithm; the pro-
posed algorithm achieves the best convergence rate (1150X faster than
MC) by efficiently spreading more samples into the failure region using
a sampling distribution with a large-standard-deviation in high dimen-
sions.

C. Sense Amplifier for Target Gain
Next, we consider a sense amplifier example which includes 13 tran-

sistors as shown in Fig. 7.

Fig. 7. The schematic of a sense amplifier circuit.

In a SRAM circuit, the sense amplifier is designed to magnify the
voltage difference between 𝐵𝐿 and 𝐵𝐿. If the gain is too small, the
output of this amplifier might be too weak to be read by the decoder
circuit. Therefore, a reading failure happens. With the variation model-
ing summarized in Table I, the sense amplifier example has 117 random
variables in total. More importantly, all of these variable parameters
are “effective” because the transistors are active and process variations
on each transistor can significantly change the gain, which is a truly
high-dimensional problem.

C.1 Accuracy Comparison
To validate the accuracy of the proposed algorithm, we apply different
methods (MC, SS[5], SB[2] and proposed) on this 117-dim problem

to predict the timing failure probability. Here, MC serves as the “gold
standard”. SB[2], is not included in the further comparison, because the
classifier used in SB[2] fail to block any Monte Carlo sample. There-
fore, Considering the complexity of running the classifier, the SB [2]
involves even higher computation complexity than MC method.

The evolution of the probability estimation in different methods are
plotted in Fig. 8(a). Several observations can be made:

First, this figure shows the failure of conventional importance sam-
pling (i.e., SS[5]). In fact, due to the degeneration or collapse of like-
lihood ratios, SS[4, 5] method converges to a random quantity which
is obviously wrong and far away from the MC result. Moreover, SS[5]
does not have a mechanism for improving accuracy even though more
samples are added.

The proposed method builds an effective proposed sampling distribu-
tion to choose more failed samples easily and its estimation is theoret-
ically bounded due to the proposed evaluation of conditional probabil-
ity. Therefore, the proposed algorithm can reliably estimate the failure
probability that matches with MC results.

C.2 Efficiency Comparison
Even though the Fig. 8(a) provides a rough comparison of efficiency, the
detailed comparison can be shown in Fig. 8(b), where different methods
try to achieve the “comparable” accuracy. Note that circuit simulation
is the most time-consuming part and the runtime cost of the remaining
computation becomes negligible. As such, the required number of cir-
cuit simulations for the same accuracy and confidence level serves as a
measurement of the efficiency.

First, the Figure-Of-Merit (FOM) is used to quantify the accuracy of
probability estimation as [4, 5]:

𝜌 =

√
𝜎2
𝑝(fail)

𝑝(fail)
. (13)

where 𝑝(fail) is the failure probability and 𝜎𝑝(fail) is the standard devi-
ation of 𝑝(fail). In fact, the FOM can be viewed as a relative error so
that lower FOM means higher accuracy of probability estimation.

We compare the evolutions of FOM for different methods in Fig. 8(b)
and draw a dash line to indicate the 90% accuracy with 90% confidence
(𝜌 = 0.1). And we can have following observations:

First, SS[5] has reached 𝜌 = 0.1 but its estimation is completely
wrong. Clearly, it cannot detect the failure at all. The same observation
is applied to other existing importance sampling methods due to the
boundedness analysis in Section 3.3.1.

Second, The proposed algorithm can provide the accurate estimation
of failure probability with only a few thousands samples, which dramat-
ically relieves the requirements of computing and storage efforts. As
shown in this figure, the proposed method can achieve 708𝑋 speedup
over Monte Carlo and be 17𝑋 faster than statistical blockade method
[2].

C.3 Comparison for Different Failure Probabilities
We study various methods on the sense amplifier example with three
different failure probabilities summarized in Table III. It is obvious
that SS[5] method fails to achieve any reasonable accuracy in all these
cases. This demonstrates the failure of conventional importance sam-
pling method. On the contrary, the estimates from the proposed method
match the MC result.

In addition, the table reveals that the proposed method provides the
fastest convergence speed in all these cases and, more importantly, of-
fers substantial complexity reduction as the failure probability becomes
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Fig. 8. Evolution comparison of the failure probability estimation and figure of merit for different methods.

TABLE III
COMPARISON FOR SENSE AMPLIFIER ANALYSIS WITH 90% TARGET ACCURACY AND CONFIDENCE LEVEL

Monte Carlo Spherical Sampling Proposed Method
Target Failure Probability (MC) (SS) [5] (HDIS)

8e-3
prob:(failure) 8.136e-4 0.2603 7.861e-3 (3.4%)

#sim. runs 4.800e+4 (24X) 16000 (8X) 2000

8e-4
prob:(failure) 8.044e-4 0.2541 8.787e-4 (9.2%)

#sim. runs 4.750e+5 (36X) 8.330e4 (6.4X) 1.300e4

8e-5
prob:(failure) 8.089e-5 0.3103 8.186e-5 (1.2%)

#sim. runs 5.156e+6 (346X) 1.430e+5 (10X) 1.500e+4

smaller. This property makes our proposed algorithm suitable for in-
dustrial problems where exist “rare events” with extremely small prob-
ability.

V. CONCLUSION

In this paper, we propose a fast statistical algorithm to estimate the
extremely small probability of rare events in high dimensions which
has proved to be bounded. The proposed algorithm has been success-
fully applied to failure probability prediction of memory circuits (e.g.,
SRAM bit-cell, sense amplifier) and demonstrates significant complex-
ity reduction without compromising the accuracy. To the best of our
knowledge, this is the first work that successfully handle the rare event
estimation in high dimensions without using MC and classic importance
sampling method. Experiments on a 54-dimensional SRAM cell circuit
show that the proposed approach achieves 1150X speedup over Monte
Carlo without compromising any accuracy. It is also 204X faster than
the classification based method (e.g., Statistical Blockade [2]) by and
5X faster than existing importance sampling method (e.g., Spherical
Sampling [4, 5]). On another 117-dimension circuit, the classification
based method fails to improve the performance by blocking “unlikely
to fail” samples, and Spherical Sampling [4, 5] method completely fails
to provide reasonable accuracy. Contrastingly, the proposed approach
yields accurate result with 364X speedup over Monte Carlo.
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