Incremental Latin Hypercube Sampling

for Lifetime Stochastic Behavioral Modeling of Analog Circuits

Yen-Lung Chen⁺, Wei Wu^{*}, <u>Chien-Nan Jimmy Liu⁺</u> and Lei He^{*} EE Dept., National Central University, Taiwan⁺ EE Dept., University of California, Los Angeles, CA, USA^{*}

_: Speaker

Outline

Background of Lifetime Yield Analysis

Proposed Incremental Latin Hypercube Sampling

Experimental Results

Conclusions

Process Variations & Yield Loss

- In deep-submicron, statistical devices induce statistical performances
- Parametric variability induces serious yield loss issues
 - Parametric variability will dominate yield loss
 - Yield affects the total cost of the products

Aging Effects & Parameter Degradation

- Aging effects change circuit behavior with time
 - Negative-bias temperature instability (NBTI), hot-carrier injection (HCI)...
- Performance degrades when exposed in the ambient air or under continuous bias-stress
 - V_t is changed a lot over time
 - Impact the circuit performances
 - Reduce yield and reliability significantly
- New technology (ex: flexible TFT) has serious challenge from aging effects
 V_t is changed a lot in seconds
- [2] R. Shringarpure, *et al.*, "Localization of Gate Bias Induced Threshold Voltage Degradation in a-Si:H TFTs," *IEEE EDL*, vol. 29, no. 1, pp. 93–95, Jan. 2008.

Lifetime Yield

- Lifetime Yield = Process Variations + Aging effects
 - Evaluate the reliability after a period of time
- Lifetime yield analysis often requires iterative circuit performance simulation
 - Evaluating the performance at EACH time step \rightarrow high cost !!

Monte Carlo Simulation

- Still the golden reference for yield analysis
- Simulate a lot of random samples
 - Analyze the performance distribution under process variations
 - High analysis cost
- □ Infeasible to do the MC analysis at each time step ...

Possible Ways to Reduce Complexity

Simplified simulation model

- Use behavioral model or equation-based model to predict the circuit performance
- Simulation time is reduced, but estimation accuracy is also reduced

Compact sample generation

- Use special sampling techniques (ex: QMC or LHS) to generate the samples for MC simulation
- Due to the fast convergence property, the required number of samples can be reduced

Performance distribution estimation

- Also called stochastic modeling technique
- Use the results of a few samples to estimate the whole probability distribution

Quadratic Model for Lifetime Yield

Use equation-based model to predict the performance distribution after a given period of time

- Pretty fast estimation without iterations
- Non-linear aging effects are hard to be predicted \rightarrow large error exists

[3] X. Pan, *et al.*, "Reliability Analysis of Analog Circuits Using Quadratic Lifetime-Worst-Case Distance Prediction," in *Proceedings CICC*, pp. 1–4, Sep. 2010.

Compact Samples: QMC & LHS

- Quasi Monte Carlo (QMC) method generates low-discrepancy sequences based on specific pseudorandom numbers
- □ Latin Hypercube Sampling (LHS) is a variant of QMC method
 - Each group in the sampling space contains only one single sample
 - Guarantee all the samples with low dependence
- Control the sample distribution for fast convergence
 - Less samples are required to reach the same accuracy \rightarrow speedup !!

Stochastic Behavioral Modeling

Moment matching-based method

- A fast way to estimate the probability distribution with less samples
 - Calculate the probabilistic moments as

k

$$m_p^k = \frac{1}{N} \cdot \sum x_i$$

Solve the resulting nonlinear equation system to obtain residues a_i and poles b_i of h(t), which is the pdf(x)

[4] F. Gong *et al.*, "Stochastic Behavioral Modeling and Analysis for Analog/Mixed-Signal Circuits," TCAD, Jan. 2013. **10**

Performance

"Incremental" Sampling for Aging Analysis

- Circuit behavioral is not changed dramatically at each time step during aging analysis
- Reuse most of samples and incrementally update a small portion of samples
 - Reduce #simulations for aging analysis significantly
- □ How to keep the randomness property of samples ?
 - \rightarrow follow the LHS property to ensure fast convergence
 - Each row and each column has only one sample !!
- Stochastic modeling is adopted to further reduce the samples for estimating the performance distribution
 - Incremental moment matching is proposed in this work

Outline

Background of Lifetime Yield Analysis

Proposed Incremental Latin Hypercube Sampling

Experimental Results

Conclusions

Flowchart of Incremental LHS

[5] S.-E. Liu, et al., "Estimate threshold voltage shift in a-Si:H TFTs under increasing bias stress," *IEEE TED*, vol. 56, no. 1, pp. 56-59, Dec. 2009.

Sample Classification

The purpose of sample analysis:
 Reuse the majority of samples
 Remove some redundant samples
 Add few new samples

PDF

Proposed Incremental LHS Method

□ The performance of each sample may be changed after aging Modify performance by estimation to consider aging □ Add/remove samples to keep the LHS property Check each row and each column for required/redundant samples □ Most of the samples are reused !! Added sample *x*2 x^2 After aging removed sample xI

Incremental Moment Matching

- Not all the calculations need to be redo **Probabilistic momen**
 - 1) **Re**-Calculate the probabilistic moments as

•
$$m_{p_old}^k = \frac{1}{N} \cdot \sum_{old} x_i^k$$

$$m_{p_new}^{k} = \frac{1}{N} \cdot \left(\sum_{old} x_{i}^{k} - \sum_{reduced} x_{i}^{k} + \sum_{increased} x_{i}^{k}\right)$$

- Only need to consider the
 "incremental" samples rather than all
 the samples
- 2) **Re-**Match to time moments m_t^k
- 3) **Re-**Solve the nonlinear system and obtain the new pdf(x)

Probabilistic moments of N samples $m_p^k = \int_{-\infty}^{\infty} x^k p df(x) dx$ Time moments of match LTI system h(t) $m_t^k = \frac{(-1)^k}{k!} \int_0^\infty x^k h(x) dx$ $\begin{bmatrix} \frac{1}{b_1} & \frac{1}{b_2} & \cdots \\ \frac{1}{b_1^2} & \cdots & \cdots \\ \vdots \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} m_1 \\ m_2 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$

$$pdf(x) = \sum_{r} a_i \cdot e^{b_i \cdot y_p}$$

Outline

Background of Lifetime Yield Analysis

Proposed Incremental Latin Hypercube Sampling

Experimental Results

Conclusions

Experimental Environment

- Perform on PC with Intel 2-core 2.50GHz CPU and 2GB memory
- Demonstrated with flexible TFT to observe clear aging effects
 - ITRI a-Si 8µm technology
 - OPA circuit with flexible TFTs [6]
 - 4-bit digital-to-analog convertor (DAC) [6]
- Methods for comparison
 - MC simulation
 - Quadratic model [3]
 - Proposed incremental LHS method

[3] X. Pan, *et al.*, "Reliability Analysis of Analog Circuits Using Quadratic Lifetime Worst-Case Distance Prediction," in *Proceedings CICC*, pp. 1–4, Sep. 2010.
[6] Y. Tarn, *et al.*, "An amorphous-silicon operation amplifier and its application to a 4-bit digital-to-analog converter," in *IEEE JSSC*, pp. 1028–1035, May. 2010.

Result Comparison of OPA Circuit

- □ iLHS achieves 243x average speedup from t=0s to t=10000s
- □ The accuracy of quadratic model is decreasing over time
 - The prediction error of the non-linear aging rate

Time (s)		MC (6k)	MC (3k)	Quad.	Proposed
0	Accuracy	100%	98%	99%	99%
	# samples	6000	3000	2000+2000	500
100	Accuracy	100%	97%	92%	99%
	# samples	6000	3000	-	13
1000	Accuracy	100%	97%	85%	99%
	# samples	6000	3000	-	16
10000	Accuracy	100%	97%	74%	99%
	# samples	6000	3000	-	29
Overall	Accuracy	100%	97%	83%	99%
	# samples	60000	30000	4000	702
	Speedup	1x	2x	150x	85x

Performance Distribution of OPA Circuit

- Proposed method achieves 99% accuracy with all time step configurations
 - Because of the property of LHS can be kept at all time

Result Comparison of DAC Circuit

- □ iLHS achieves 242x average speedup from t=0s to t=10000s
- □ The accuracy of quadratic model is still low
 - The prediction error of the non-linear aging rate

Time (s)		MC (6k)	MC (3k)	Quad.	Proposed
0	Accuracy	100%	98%	98%	99%
	# samples	6000	3000	2000+2000	500
100	Accuracy	100%	97%	89%	98%
	# samples	6000	3000	-	12
1000	Accuracy	100%	96%	82%	98%
	# samples	6000	3000	-	19
10000	Accuracy	100%	96%	73%	99%
	# samples	6000	3000	-	33
Overall	Accuracy	100%	97%	82%	98%
	# samples	60000	30000	4000	770
	Speedup	1x	2x	150x	78x

Reduction on Simulation Samples

Only hundreds of samples are required to re-simulate in proposed incremental LHS method

Conclusions

- Incremental LHS method is proposed for aging analysis
 Aging effects change the circuit behavior gradually
- Only a small portion of samples are incrementally updated at each time step in aging analysis
 - Reuse previous samples to greatly reduce the simulation efforts
- Stochastic modeling is adopted to further reduce #samples
 Incremental moment matching is also proposed in this work
- Experimental results achieve 85x speedup over traditional reliability analysis method with similar accuracy
 - Demonstrated on OPA and DAC circuits

Thanks for your listening !!! 😌

Email: jimmy@ee.ncu.edu.tw