REscope: High-dimensional Statistical Circuit Simulation towards Full Failure Region Coverage

Wei Wu¹, Wenyao Xu², Rahul Krishnan¹, Yen-Lung Chen³, and Lei He¹
1 Electrical Engineering Department, UCLA, http://eda.ee.ucla.edu
2 CSE Dept., University of Buffalo, SUNY, NY, USA
3EE Dept., National Central University, Taiwan, R.O.C

Need & Challenge of High Sigma analysis

- Need for statistical circuit analysis
 - Process technology continue to scale 45nm, 32nm, -22nm ...
 - Shrinking devices
 → more prone to PVT variations
 - Statistical circuit analysis helps to debug circuits in the pre-silicon phase, and enhances yield rate
- **Challenges: High Sigma** (Rare Failure Event) analysis
 - Memory cell (e.g. 6+ sigma)

Percen

Critical circuits (e.g. 4-5 sigma): I/O cell, PLL, etc.

Courtesy of Prof. Yiming Li, National Chiao Tung University, Taiwan

700

4,400

74,100

3,157,500

348,855,600

[LYL09] Kyu Won Lee, SM Yoon, SC Lee, W Lee, IM Kim, Cheol Eui Lee, and DH Kim. "Secondary electron eneration in electron-beam-irradiated solids: Resolution limits to nanolithography." J Korean Phys Soc, 55:1720–1723, 2009

Slide 2 of 14

Existing Approaches

- Monte Carlo Simulation:
 - Monte Carlo is infeasible for high sigma analysis in terms of computational complexity
 - One post-layout PLL simulation may take several hours
- Importance Sampling methods:
 - Shift the sample distribution to more "important" region
 - e.g. Spherical sampling^[QTD10], HDIS^[WGC14]
- Classification based methods:
 - Statistical Blockade (Linear classifier)^[SR08]

[QTD10] M. Qazi, M. Tikekar, L. Dolecek, D. Shah, and A. Chandrakasan, "Loop flattening and spherical sampling: Highly efficient model reduction techniques for SRAM yield analysis," in DATE'2010, pp. 801–806. [12] W. Wu, F. Gong, G. Chen, and Lei He, "A Fast and Provably Bounded Failure Analysis of Memory Circuits in High Dimensions", ASPDAC'2014 [SR08] A Singhee, and RA Rutenbar. "Statistical blockade: Very fast statistical simulation and modeling of rare circuit events and its application to memory design," in DATE'2008, pp. 235-251.

What if there are multiple failure regions ?

What if failure samples fall in multiple disjoint regions

Importance sampling works like this:

 Statistical blockade can't identify multiple failure regions. Even worse, the classifier scales poorly with the number of variation variables

Unfortunately, multiple failure regions do exist

MP1

MN4

MN3

GND

Up

Dn

MP2

SW1

SW2

MN5

Out

PFD: phase frequency detector; CP FD: frequency divider; VC

CP: Charge pump VCO: voltage controlled oscillator

Mismatch between MP2 and MN5 may result in fluctuation of control voltage, which will lead to "jitter" in the clock.

Vths of MP2 and MN5 are variation parameters

Slide 5 of 14

Rare-Event Microscope (REscope)

- Make the classification based approach more practical, in terms of accuracy and efficiency.
 - Identifies multiple failure regions
 - Handles high dimensional problems
 - Approximates the tail as a generalized pareto distribution (GPD)
 - GPD: a good model for the distribution of the exceedence to a certain threshold in another distribution, i.e. the tail of PDF(y)

Pruning and Classification

- Parameter pruning (Feature selection)
 - Evaluate the "Importance" of each parameter (feature)
 - RELIEF-F algorithm:

Pre-sampling

- $W_i = W_i + (x_i nearMiss_i)^2 (x_i nearHit_i)^2$
- Sort parameters by "Importance", and prune the unimportant parameters

Classification

Distribution of

process variation

parameters

- The boundary separating accept and failure regions is usually nonlinear
- Apply support vector machine (SVM) with radial basis function (RBF) kernel yields a good nonlinear boundary

Parameter

Pruning

Calculate W₂

Tail Distribution

Estimation

x,-nearMiss,

Classification

Failure

probability

GPD Approximation

- Approximate the tail of PDF by GPD with only 2 parameters
 - Shape parameter(ξ), scale parameter(σ), starting point of the tail(μ)

$$F_{(\xi,\mu,\sigma)}(y) = \begin{cases} 1 - \left(1 - \frac{\xi(y-\mu)}{\sigma}\right)^{\frac{1}{\xi}} & for \ \xi \neq 0\\ 1 - \exp\left(-\frac{(y-\mu)}{\sigma}\right) & for \ \xi = 0 \end{cases}$$
(5)

- Calculate the initial solution by probability weighted moment matching
- Refine the solution by Newton's method

Experiments: REscope for Charge Pump

- One circuit, two configurations
 - An illustrative example: only 2 variation parameters
 - Vth of MP2 and MN5
 - A high dimensional example: **108** process variation parameters (27 transistors, 4 process variation parameters for each)
 - Channel length
 - Channel weight
 - Gate oxide thickness
 - Flat-band voltage
- Failure: current mismatch.

Experiment 1: Illustration of Classification results

Slide 10 of 14

Experiment 2: Handling high dimensional cases

- Parameter pruning results:
 - 27 important features are selected out of 108 variables

Figure 7: Weight of all 108 process variations in charge pump circuit

Accuracy of REscope

 Tail modeling after parameter pruning:

1.13

CDF tail in log scale

1.14

1.12

2.5

1.08

1.09

(b)

1 1

1.11

-MC

1.15 1.16

REscope

Mismatch after 4.2 sigma because we don't have enough MC samples so far.

The estimated P_{fail}

overlap with MC

Slide 12 of 14

Comparison with existing methods

Table 1: Comparison of the accuracy and efficiency on charge pump circuit

	Monte Carlo (MC)	Importance sampling (HDIS)[12]	Proposed approach (REscope)
failure probability	2.279e-5 (0%)	1.136e-3	2.256e-5 (+1.05%)
#sim. runs	1.4e+6 (389x)	2e+4 (5.6x)	3.6e+3 (1x)

 389x speedup on MC with 1.05% error at 4 sigma, while importance sampling and statistical blockade fail.

[12] Wei Wu, Fang Gong, Gengsheng Chen, and Lei He, "A Fast and Provably Bounded Failure Analysis of Memory Circuits in High Dimensions", ASPDAC'2014

Slide 13 of 14

Conclusions

Strength:

- Dimension reduction algorithm keeps the "important" parameters only.
- Nonlinear classifier works perfectly on detecting multiple failure regions.
- The tail is explicitly matched to a known distribution, such as GPD, to further reduce the number of sample.
- Experiments show 389x speedup on MC with only 1.05% error, which importance sampling and statistical blockade fail.

- Limitation and Future direction:
 - Considering the correlation between variations sources
 - Algorithm to automatically adjust the classifier configuration

Thanks!

Address Comments to weiw@seas.ucla.edu