
Accelerating the Iterative Linear Solver
for Reservoir Simulation

Wei Wu1, Xiang Li2, Lei He1, Dongxiao Zhang2

1 Electrical Engineering Department, UCLA
2 Department of Energy and Resources Engineering, College of Engineering, PKU

Outline

 Background
– Reservoir simulation problems and its mathematical formulation

– Similarities and differences with circuit simulation

 Method

 Experiment results

Background: Reservoir simulation

 Problem in petroleum engineering:
– Petroleum reservoir is still the major energy supply in

the modern society.

– Modern petroleum reservoir simulation serves as a
primary tool for quantitatively managing reservoir
production and designing development plans for new
fields.

 Petroleum reservoir simulation:
– Reservoir simulators: A set of nonlinear partial

differential equations (PDE) about mass and energy
conduction. (Which is similar to circuit simulators)

Background: Reservoir simulation

 Petroleum reservoir simulation:
– A nonlinear partial differential equations (PDE) problem.

– The partial differential problem is solved using backward Euler method in several
time steps.

– In each time step, the nonlinear problem is solved by Newton’s method, where each
Newton step is solving a linear equation: Ax=b

𝑥′ = 𝐹(𝑥, 𝑡)

𝑥 𝑡0 = 𝑥0

𝑥(𝑡𝑘+1) = 𝑥(𝑡𝑘) + ℎ𝐹(𝑡𝑘+1, 𝑥(𝑡𝑘+1))

𝐽𝐹 𝑥𝑛 𝑥𝑛+1 − 𝑥𝑛 = −𝐹(𝑥𝑛)

𝐽𝐹 𝑥𝑛 is the Jacobian of 𝐹(𝑥𝑛)

Solving a linear system Ax=b

 Iterative method
– i.e.: Gassian Siedel, GMRES

– 3 major components:

 Preconditioner, triangular solve, SPMV

 Direct method
– i.e. LU factorization

– Calculate A=LU

– Then solve Ax=b as Ly=b and Ux=y

“Hotspot” in Reservoir solver

 A profiling of Reservoir simulation
– (ILU preconditioner, triangular solve, SPMV) consists of a large portion of the runtime

in reservoir simulation

– ILU and triangular solve are difficult to parallelize. (no existing parallel implementation
released)

Outline

 Background

 Method
– Block-wise data operation

– Parallel ILU(P) and triangular solve for reservoir simulation

– Task dependency tree and hybrid parallel mode

 Experiment results

Sparse LU Factorization

 Optimized sparse storage format?
– Store in compressed sparse column

format

 Only store the nonzero entries

 Blockwise compressed sparse column
is used for reservoir matrices

 Algorithms needs to consider the
sparse formatting
– Fillins are introduced when updating

column “i” using a different column “j”

– A sparse matrix might turn out to be
dense after LU factorization

Sparse Incomplete LU factorization

 ILU algorithm?
– Incomplete LU factorization

– It will not introduce all the fillin during the factorization

 As a special case, the ILU0 will not consider any fillin during the
factorization.

 If a column is going to be updated by another column in L, only
the existing nonzeros will be considered.

 Why is it difficult to parallelize ILU?
– Computations in ILU are sequential and data dependency

exists. (i.e.)

The NNZs in the upper part of a column
determine which column is required for
the updating of this column

i j k i j k i j k

Parallel sparse ILU algorithm

 Analyze the data dependency:

 Represent the data dependency in a data
flow graph:
– Exact describes the data dependency

– Difficult to implement in practice

1 Considering process each column as a tasks
2 Task k depends on task i and j only when nonzeros
exist in (i, k) and (j, k)

i j k

Parallel sparse ILU algorithm

 A better representation of data dependency for implementation

 Tasks in Elimination Graph are partitioned into different levels:
– Level is actually the “earliest starting time” of each task

– No data dependency exists between tasks in the same level

– The level i need the data from level 0~i-1

Xiaoming, C., Wei W., et al. (2011). "An EScheduler-Based Data Dependence Analysis and Task Scheduling for Parallel Circuit Simulation." Circuits and Systems II: Express Briefs, IEEE Transactions on 58(10):
702-706.

Two parallel modes

 Cluster mode:
– Distribute independent tasks to multiple cores

level by level

– Low overhead

 Pipeline mode
– Schedule the tasks with data dependency as a

pipeline by inter-thread message passing

– Try to overlap these tasks

– High overhead

Parallel Triangular solve

 Triangular solve calculates x from Ax=LUx=b in two steps:
– Solve: L(Ux)=Ly=b

– Solve: Ux=y

 Each task is much “lighter” compared with the task in ILU
– Similar task scheduling algorithm can be applied.

– Thread synchronization in pipeline mode will dominate the runtime.

– Only cluster mode task scheduling is applied.

Outline

 Background

 Method

 Experiment results
– Experiment setup

– Comparison between sequential version of block ILU and existing work (ITSOL
and PARDISO)

– Scalability with multicore processors

N. Li, B. Suchomel, D. Osei-Kuffuor, and Y. Saad, “ITSOL: Iterative solvers package,” University of Minnesota, 2008.

Experiment setup

 Hardware platform: Intel CoreTM i7-3820
– 8 concurrent threads at 3.6 GHz

 Software included for comparisons:
– PARDISO (direct solver), ITSOL (iterative solver)
– Block ILU (Proposed)

 Including both sequential and different parallel implementations

 Algorithm configurations
– ITSOL and Block ILU

 level of Fill is configured as 1 in ILU(p)
 Tolerance for stopping iteration is set to 1e-6

– PARDISO is loaded from Intel MKL library

 Test Matrices
– 14 reservoir matrices dumped from an industrial reservoir simulator
– The dimension is upto 3 million by 3 million

Speedup contribute by blockwise data structure
(Sequential version)

• Sequential version of block ILU(1) is 5.2x faster than ITSOL on geometric average.
• Blockwise data structure can get better cache hit rate

• The iterative solver is much faster than direct solver (PARDISO) on these matrices.

Parallel Scalability

 Speedup of multi-thread program over single thread program

• The total runtime of reservoir simulator is reduced to less than ½
on a 4-thread machine

• Better speedup for cases with
• Higher dimension (comparatively less overhead)

ILU1 preconditioner
2.3-4.6x speedup (3.6x on average)

Triangular solve
2.4-3.8x speedup (3.3x on average)

Speedup of ILU and triangular solve under different
parallel mode

• Hybrid mode is the winner for ILU(1), but the cluster mode is the best choice for triangular solve.

 That is because the computation load of each task is much lighter, resulting to a high overhead of using pipeline.

Performance of Pipeline, Cluster and Hybrid mode

Hybrid mode is not always the winner!

Experiment results – Scalability

 Speedup when # of threads increase

Speedup scales while the # of threads increase

We can still notice the trend of increase speedup at 8 threads.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8

M_40.ugm

M_HD2.ugm

M_3M.ugm

Conclusion

 ILU0 can triangular solve are identified as the bottleneck of the reservoir simulators.

 Acceleration:
– By taking advantage of the blockwise data structure, we can get 5.2x speedup on average.

– More speedup can be achieved by scheduling ILU and solve based on the dependency tree:
 3.6x and 3.3x speedup are achieved on ILU and solve respectively

– The total speedup of ILU(1) is 18.7x compared with the well-known ITSOL package

 Scalability:
– Speedup scales with # of threads

– Better speed up is achieved on larger problems and matrices with larger dimension.

Thanks for your attention!

Please address question to Wei Wu
(weiw@seas.ucla.edu).

mailto:weiw@seas.ucla.edu

