
Accelerating the Iterative Linear Solver
for Reservoir Simulation

Wei Wu1, Xiang Li2, Lei He1, Dongxiao Zhang2

1 Electrical Engineering Department, UCLA
2 Department of Energy and Resources Engineering, College of Engineering, PKU

Outline

 Background
– Reservoir simulation problems and its mathematical formulation

– Similarities and differences with circuit simulation

 Method

 Experiment results

Background: Reservoir simulation

 Problem in petroleum engineering:
– Petroleum reservoir is still the major energy supply in

the modern society.

– Modern petroleum reservoir simulation serves as a
primary tool for quantitatively managing reservoir
production and designing development plans for new
fields.

 Petroleum reservoir simulation:
– Reservoir simulators: A set of nonlinear partial

differential equations (PDE) about mass and energy
conduction. (Which is similar to circuit simulators)

Background: Reservoir simulation

 Petroleum reservoir simulation:
– A nonlinear partial differential equations (PDE) problem.

– The partial differential problem is solved using backward Euler method in several
time steps.

– In each time step, the nonlinear problem is solved by Newton’s method, where each
Newton step is solving a linear equation: Ax=b

𝑥′ = 𝐹(𝑥, 𝑡)

𝑥 𝑡0 = 𝑥0

𝑥(𝑡𝑘+1) = 𝑥(𝑡𝑘) + ℎ𝐹(𝑡𝑘+1, 𝑥(𝑡𝑘+1))

𝐽𝐹 𝑥𝑛 𝑥𝑛+1 − 𝑥𝑛 = −𝐹(𝑥𝑛)

𝐽𝐹 𝑥𝑛 is the Jacobian of 𝐹(𝑥𝑛)

Solving a linear system Ax=b

 Iterative method
– i.e.: Gassian Siedel, GMRES

– 3 major components:

 Preconditioner, triangular solve, SPMV

 Direct method
– i.e. LU factorization

– Calculate A=LU

– Then solve Ax=b as Ly=b and Ux=y

“Hotspot” in Reservoir solver

 A profiling of Reservoir simulation
– (ILU preconditioner, triangular solve, SPMV) consists of a large portion of the runtime

in reservoir simulation

– ILU and triangular solve are difficult to parallelize. (no existing parallel implementation
released)

Outline

 Background

 Method
– Block-wise data operation

– Parallel ILU(P) and triangular solve for reservoir simulation

– Task dependency tree and hybrid parallel mode

 Experiment results

Sparse LU Factorization

 Optimized sparse storage format?
– Store in compressed sparse column

format

 Only store the nonzero entries

 Blockwise compressed sparse column
is used for reservoir matrices

 Algorithms needs to consider the
sparse formatting
– Fillins are introduced when updating

column “i” using a different column “j”

– A sparse matrix might turn out to be
dense after LU factorization

Sparse Incomplete LU factorization

 ILU algorithm?
– Incomplete LU factorization

– It will not introduce all the fillin during the factorization

 As a special case, the ILU0 will not consider any fillin during the
factorization.

 If a column is going to be updated by another column in L, only
the existing nonzeros will be considered.

 Why is it difficult to parallelize ILU?
– Computations in ILU are sequential and data dependency

exists. (i.e.)

The NNZs in the upper part of a column
determine which column is required for
the updating of this column

i j k i j k i j k

Parallel sparse ILU algorithm

 Analyze the data dependency:

 Represent the data dependency in a data
flow graph:
– Exact describes the data dependency

– Difficult to implement in practice

1 Considering process each column as a tasks
2 Task k depends on task i and j only when nonzeros
exist in (i, k) and (j, k)

i j k

Parallel sparse ILU algorithm

 A better representation of data dependency for implementation

 Tasks in Elimination Graph are partitioned into different levels:
– Level is actually the “earliest starting time” of each task

– No data dependency exists between tasks in the same level

– The level i need the data from level 0~i-1

Xiaoming, C., Wei W., et al. (2011). "An EScheduler-Based Data Dependence Analysis and Task Scheduling for Parallel Circuit Simulation." Circuits and Systems II: Express Briefs, IEEE Transactions on 58(10):
702-706.

Two parallel modes

 Cluster mode:
– Distribute independent tasks to multiple cores

level by level

– Low overhead

 Pipeline mode
– Schedule the tasks with data dependency as a

pipeline by inter-thread message passing

– Try to overlap these tasks

– High overhead

Parallel Triangular solve

 Triangular solve calculates x from Ax=LUx=b in two steps:
– Solve: L(Ux)=Ly=b

– Solve: Ux=y

 Each task is much “lighter” compared with the task in ILU
– Similar task scheduling algorithm can be applied.

– Thread synchronization in pipeline mode will dominate the runtime.

– Only cluster mode task scheduling is applied.

Outline

 Background

 Method

 Experiment results
– Experiment setup

– Comparison between sequential version of block ILU and existing work (ITSOL
and PARDISO)

– Scalability with multicore processors

N. Li, B. Suchomel, D. Osei-Kuffuor, and Y. Saad, “ITSOL: Iterative solvers package,” University of Minnesota, 2008.

Experiment setup

 Hardware platform: Intel CoreTM i7-3820
– 8 concurrent threads at 3.6 GHz

 Software included for comparisons:
– PARDISO (direct solver), ITSOL (iterative solver)
– Block ILU (Proposed)

 Including both sequential and different parallel implementations

 Algorithm configurations
– ITSOL and Block ILU

 level of Fill is configured as 1 in ILU(p)
 Tolerance for stopping iteration is set to 1e-6

– PARDISO is loaded from Intel MKL library

 Test Matrices
– 14 reservoir matrices dumped from an industrial reservoir simulator
– The dimension is upto 3 million by 3 million

Speedup contribute by blockwise data structure
(Sequential version)

• Sequential version of block ILU(1) is 5.2x faster than ITSOL on geometric average.
• Blockwise data structure can get better cache hit rate

• The iterative solver is much faster than direct solver (PARDISO) on these matrices.

Parallel Scalability

 Speedup of multi-thread program over single thread program

• The total runtime of reservoir simulator is reduced to less than ½
on a 4-thread machine

• Better speedup for cases with
• Higher dimension (comparatively less overhead)

ILU1 preconditioner
2.3-4.6x speedup (3.6x on average)

Triangular solve
2.4-3.8x speedup (3.3x on average)

Speedup of ILU and triangular solve under different
parallel mode

• Hybrid mode is the winner for ILU(1), but the cluster mode is the best choice for triangular solve.

 That is because the computation load of each task is much lighter, resulting to a high overhead of using pipeline.

Performance of Pipeline, Cluster and Hybrid mode

Hybrid mode is not always the winner!

Experiment results – Scalability

 Speedup when # of threads increase

Speedup scales while the # of threads increase

We can still notice the trend of increase speedup at 8 threads.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8

M_40.ugm

M_HD2.ugm

M_3M.ugm

Conclusion

 ILU0 can triangular solve are identified as the bottleneck of the reservoir simulators.

 Acceleration:
– By taking advantage of the blockwise data structure, we can get 5.2x speedup on average.

– More speedup can be achieved by scheduling ILU and solve based on the dependency tree:
 3.6x and 3.3x speedup are achieved on ILU and solve respectively

– The total speedup of ILU(1) is 18.7x compared with the well-known ITSOL package

 Scalability:
– Speedup scales with # of threads

– Better speed up is achieved on larger problems and matrices with larger dimension.

Thanks for your attention!

Please address question to Wei Wu
(weiw@seas.ucla.edu).

mailto:weiw@seas.ucla.edu

