Acceleratmg the Iterative Linear Solver
for Reservoir Simulation

- — £ il e = 1 o -

Wei Wul, Xiang Li2, LeiHel!, Dongxiao Zhang?
1 Electrical Engineering Department, UCLA
2 Department of Energy and Resources Engineering, College of Engineering, PKU

Outline

= Background
— Reservoir simulation problems and its mathematical formulation
- Similarities and differences with circuit simulation

= Method

= Experiment results

Background: Reservoir simulation

= — = e = - ==

= Problem in petroleum engineering:

~ — Petroleum reservoir is still the major energy supply.in
the modern society.

— Modern petroleum reservoir simulation serves as a
primary tool for quantitatively managing reservoir
production and designing development plans for new
fields. |

= Petroleum reservoir simulation:

~ Reservoir simulators: A set of nonlinear partial
differential equations (PDE) about mass and energy
conduction. (Which is similar to circuit simulators)

Background: Reservoir simulation

— — = S = &

= Petroleum reservoir simulation:
— A nonlinear partial differential equations (PDE) problem.

- The partial differential problem is solved using backward Euler method in several
time steps.

— In each time step, the nonlinear problem is solved by Newton’s method where each
Newton step is solving a linear equation: Ax=b

Nonlinear PDE g
Enrl-;bler'n e F(x’ t)
x(to) = xg

Backward Euler

X(tirr) = X(t) + HF (tias, %(ti))

]F(xn)(xn+1 ce xn) = —F(xn)
Jr(x,,) is the Jacobian of F(x,,)

Solving a linear system Ax=b

EE————— = ——

= |terative method | : = Direct method
— j.e.: Gassian Siedel, GMRES — i.e. LU factorization
— 3 major components:
.. = Preconditioner, triangular solvé, SPMV — Calculate A=LU

— Then solve Ax=b as Ly=b and Ux=y

“Hotspot” in Reservoir solver

» A profiling of Reservoir simulation

— (ILU preconditioner, triangular solve, SPMV) consists of a large portion of the runtime
in reservoir simulation

= ILU and triangular solve are difficult to parallelize. (no existing parallel implementation
released)

miLy B Triangular Solve D‘)pl\ O Others

Outline

= Background

= Method
— Block-wise data operation
— Parallel ILU(P) and triangular solve for reservoir simulation
- Task dependency tree and hybrid parallel mode

= Experiment results

Sparse LU Factorization

= Optimized sparse storage format? Lo
— Store in COmpresse,d sparse column | . tol colptr |13 68 11 16 17 20 |

format
.= Only store the nonzero entries

= Blockwise compressed sparse column
is used for reservoir matrices

= Algorithms needs to consider the
sparse formatting

— Fillins are introduced when updating

{ou:n a1

column “i” using a different column “

— A sparse matrix might turn out to be
dense after LU factorization

Sparse Incomplete LU factorization

E————

= |LU algorithm?
— Incomplete LU factorization

- It will not introduce all the fillin during the factorization

= As a special case, the ILUO will not consider any fillin during the
factorization.

i
i

(T TH

LT LA

-

LTI LA
(VIW[V[w[¥L¥] | |

Y[v[v[v[vi¥iy[|

S
Y|
-
-
1
-
|
—
-
1
]
1
-
|1

A
|
||
[|
||
[|
[|
[|

l LT T A =

= |f a column is going to be updated by another column in L, only : :
the existing nonzeros will be considered. : '

P

= Why is it difficult to parallelize ILU?

— Computations in ILU are sequential and data dependency
exists. (i.e.)

Parallel sparse ILU algorithm

= Analyze the data dependency:

= Represent the data dependency in a.data
flow graph:
— Exact describes the data dependency -
— Difficult to implement in practice

1
2
3
4
5
6
7
8
9

=

Parallel sparse ILU algorithm

= A better representation of data dependency for implementation

[1_2]i3 7 IcLuster
Jmode

] L/ - pipeline
7) s i 2 mode
1@ .. —
%))
f

~ = Tasks in Elimination Graph are partitioned into different levels:
— Level is actually the “earliest starting time” of each task

|~
VNGOV B WN R

EEEEEE NN

1
]
[|
[|
[|
[|
|
[|
[|
[]

— No data dependency exists between tasks in the same level
- The level i need the data from level 0%~i-1

Xiaoming, C., Wei W.,, et al. (2011). "An EScheduler-Based Data Dependence Analysis and Task Scheduling for Parallel Circuit Simulation." Circuits and Systems Il: Express Briefs, IEEE Transactions on 58(10):
702-706.

Two parallel modes

= Cluster mode:

Core 1

— Distribute independent tasks to multiple cores _ .
level by level -] | Cluste

‘ Mode

—~ Low overhead

]\ cluster
J"mode

s 1pipelinef
HE J'like mode

Task 8, 10

i _iThread 2

“<Pipelinemode” =ov s aen e N

— Schedule the tasks with data dependency as a
pipeline by inter-thread message passing

— Try to overlap these tasks
— High overhead

‘ Task 10 ‘

Task 10

Parallel Triangular solve

S ——————

= Triangular solve calculates x from Ax=LUx=b in two steps:
— Solve: L(Ux)=Ly=b
- Solve: Ux=y '

= Each task is much “lighter” compared with the task in ILU
— Similar task scheduling algorithm can be applied.
— Thread synchronization in pipeline mode will dominate the runtime.
— Only cluster mode task scheduling is applied.

Outline

= Background
. Method

= Experiment results

— Experiment setup

— Comparison between sequential version of block ILU and existing work (ITSOL
and PARDISO)

— Scalability with multicore processors

N. Li, B. Suchdmel, D. Osei-Kuffuor, andY. Saad, “ITSOL: Iterative solvers package,” University of Minnesota, 2008.

Experiment setup

Hardware platform: Intel Core™ i7-3820
— 8 concurrent threads at 3.6 GHz

Software included for comparisons:
— PARDISO (direct solver), ITSOL (iterative solver)

— - Block ILU (Proposed)
= Including both sequential and different parallel implementations

Algorithm configurations

— 'ITSOL and Block ILU
= |evel of Fill is configured as 1 in ILU(p)
= Tolerance for stopping iteration is set to 1e-6

— PARDISO is loaded from Intel MKL library

Test Matrices
— 14 reservoir matrices dumped from an industrial reservoir simulator
— The dimension is upto 3 million by 3 million

Speedup contribute by blockwise data structure

(Sequential version)

Table I
COMPARISON ON THE SINGLE-THREAD RUNTIME ON MATRICES GENERATED FROM INDUSTRIAL RESERVOIR SIMULATOR
Test # of blcoks Block size # of # of [LU(T) runtime (ms) and speedup Total runtime (ms) and speedup PARDISO
Cases RRP | WWP | RRP | WWP rows | iterations ITSOL | block ILU" | Speedup ITSOL | block ILU' | Speedu

SPE_2k 2592 0 10 I 25920 12 440.0 87.5 =AY, 660.0 158.8 <= 1648.3
M_12 12344 59 3 4 37268 15 60.0 6.9 8.7 100.0 47.9 2.1 649.1
SPE_9k 0408 0 7 I 65856 4 610.0 128.0 4.8 1030.0 179.9 5.7 11472.0
SPE_10k 10368 0 10 I 103680 119 1820.0 327.9 5.5 2730.0 20453 0.9 24664.4
M_LN 43679 59 3 4 131273 12 250.0 27.5 0.1 380.0 146.0 2.6 5584.1
M_50 50000 20 5 3 250060 16 1250.0 327.0 3.8 2460.0 801.9 3.1 44496.8
M_40 100000 80 4 3 400240 12 680.0 416.6 1.6 1000.0 747.0 1.3 304841.8
SPE_41k 41472 0 10 I 414720 160 7780.0 1377.5 5.6 [1580.0 15838.2 0.7 495332.9
M_100 100000 20 5 3 500060 22 2730.0 669.3 4.1 5230.0 1989.5 2.6 505445.2
M_LN2 260085 184 2 3 522522 31 N/A 97.0 N/A N/A 991.8 N/A 356098.2
SPE_735k 75264 0 7 I 526848 2 5240.0 1031.7 5.1 7530.0 1285.4 3.9 1235692.9
M_HD?2 368326 10 3 4 1105018 4 2170.0 246.1 8.8 2850.0 624.7 4.6 237800.7
M_2M 1094421 425 2 3 2190117 65 2560.0 493.8 5.2 5700.0 8141.0 0.7 N/A
M_3M 1094421 425 3 4 3284963 33 7790.0 1240.1 6.3 14780.0 92429 1.6 N/A

Iblock ILU refers to the single thread version of the proposed iterative solver with ILU

 Sequential version of block ILU(1) is 5.2x faster than ITSOL on geometric average.

 Blockwise data structure can get better cache hit rate
 The iterative solver is much faster than direct solver (PARDISO) on these matrices.

Parallel Scalability

= Speedup of multi-thread 'program over single thread program

1Thread -eiles? Threads es@esd Threads wsieef Threads 1 Thread ==le=? Threads =sge=4Threads esess Threads

Speedup

Speedup

IL1 prconditioner
2.3-4.6x speedup (3.6x on average)

Triangular solve
2.4-3.8x speedup (3.3x on average)

e The total runtime of reservoir simulator is reduced to less than V-
on a 4-thread machine

» Better speedup for cases with
« Higher dimension (comparatively less overhead)

Speedup of ILU and triangular solve under different
parallel mode

=®=—Cluster Mode ==ll=Pipeline Mode ==fe=Hybrid (Cluster + Pipeline) Mode e (|uster Mode ==ll=Pipeline Mode smgsmHybrid (Cluster + Pipeline) Mode

A5 35
4.0
3.5
3.0
2.5
2.0
1.5

N - SR RS MR SN\ MU g
o \.\\:’ < <<,39 RV \3\{9 \3‘? J;\’ > oS ‘jﬁ ® }\} \&

(a) ILU(1)

(b) Triangular solve

- Hybrid mode is the winner for ILU(1), but the cluster mode is the best choice for triangular solve.

» That is because the computation load of each task is much lighter, resulting to a high overhead of using pipeline.

Experiment results — Scalability

E————

= Speedup when # of thfea'ds increase

—o— M_40.ugm

235 —8— M_HD2.ugm

2.7 —&—M_3M.ugm

1.5

1 -

0.5 A

1 2 | 3 I 4 | 5 | 6 | Vi 8
Speedup scales while the # of threads increase

- We can still notice the trend of increase speedup at 8 threads.

Conclusion

—— = : — = > — ——— &

= |LUO can triangular solve are identified as the bottleneck of the reservoir simulators.

= Acceleration: -
— By taking advantage of the blockwise data structure, we can get 5.2x speedup on average.
- More speedup can be achieved by scheduling ILU and solve based on the dependency tree:
= 3.6xand 3.3x speedup are achieved on ILU and solve respectively _
~ The total speedup of ILU(1) is 18.7x compared with the well-known ITSOL package

= Scalability:
— Speedup scales with # of threads
— Better speed up is achieved on larger problems and matrices with larger dimension.

Thanks for your attention!

Please address question to Wei Wu
| (weiw@seas:ucla.edu).

mailto:weiw@seas.ucla.edu

