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Why statistical circuit analysis? - Process Variation

® Process Variation
® First mentioned by William Shockley in his analysis of P-N junction breakdownlS6l in 1961

® Revisited in 2000s for long channel devices [JSSC03, JSSCO3]
® Getting more attention at sub-100nm ['BMO7, INTELO8]

® Sources of Process Variation
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Evolution of Process Variation

Higher Density=>» Rare failure event matters

1) 10% independent identical standard cells
2) 10 failure probability
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® Rare Event Analysis helps to debug circuits in the pre-silicon phase to improve
yield rate




Estimating the Rare Failure Event

® Rare event (a.k.a. high sigma) tail is difficult to achieve with Monte Carlo
® # of simulations required to capture 100 failing samples
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® High sigma analysis is required for highly-duplicated circuits and critical circuits
® Memory cells (up to 4-6 sigma), IO and analog circuits (3-4 sigma)?

® How to efficiently and accurately estimate Py (yield rate) on high sigma tail?

1 Cite from Solido Design Automation whitepaper (Other industrial companies: ProPlus, MunEDA, etc.)




Executive Summary

® Background
® Why statistical circuit analysis, high sigma analysis?
® Existing approaches and limitations.

® Hyperspherical Clustering and Sampling (HSCS)
® Importance Sampling
® Applying and optimizing clustering algorithm for high sigma analysis (Why spherical?)
® Deterministically locating all the failure regions
® Optimally sample all failure regions

® Experimental Results: very accurate and robust performance
® Experimental on both mathematical and circuit-based examples




High Sigma Analysis — more details about the tail

® Draw more samples in the tail

® Analytical Approach
® Multi-ConelPAC1?]

® Importance Sampling!PACOE]

® Shift the sample distribution to more
“important” region

spec 8%)
1 .-~ Soo
'l‘fnfeasible region
1 (1/1M pseudo-

—

Prob. density

- /tail

~

® Classification based methods[TCAD09] .

® Filter out unlikely-to-fail samples using s b
classifier \

Parameter space

® Markov Chain Monte Carlo (MCMC)ICCADL4,

® Itis difficult to cover the failure regions using
a few chain of samples
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Challenges — High Dimensionality

® High Dimensionality

® Analytical approaches: complexity scales
exponentially to the dimension.
o # of cones in multi-cone

® |S: can be numerical instable at high dimensional
o Curse of dimensionality!Berkeley0s, Stanford09)

® Classification based approaches: classifiers
perform poorly at high dimensional with limited
number of training samples.

® MCMC: It is difficult to cover the failure regions
using a few chain of samples

[Berkeley08] Bengtsson, T., P. Bickel, and B. Li. “Curse-of-Dimensionality Revisited: Collapse of the Particle Filter in Very Large Scale Systems.” Probability and Statistics: Essays in Hono
of David A. Freedman 2 (2008): 316—34.
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Challenge — Multiple Failure regions

® Failing samples might distribute in multiple disjoint regions

® A real-life example with multiple failure regions: Charge Pump (CP) in a PLL
Digital __ Analog Analog

PFD: phase frequency detector;
CLK ¢ CP: Charge pump
~ FD: frequency divider;
VCO: voltage controlled oscillator

Mismatch between MP2 and MN5 may
result in fluctuation of control voltage,
which will lead to “jitter” in the clock.

Failing Samples with relaxed boundary
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DAC14] Wu, Wei, W. Xu, R. Krishnan, Y. Chen, L. He. "REscope: High-dimensional Statistical Circuit Simulation towards Full Failure Region Coverage’, DAC 2014




Qutline

® Background
® Why statistical circuit analysis, high sigma analysis?
® Limitation of existing approaches.

® Hyperspherical Clustering and Sampling (HSCS)

Importance Sampling

Applying and optimizing clustering algorithm for high sigma analysis (Why spherical?)
Deterministically locating all the failure regions

Optimally sample all failure regions
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® Experimental Results: very accurate and robust performance
® Experimental on both mathematical and circuit-based examples




Importance Sampling

® A Mathematic interpret of Monte Carlo ,
_ a.‘ Success Region
® Ppay = [1(x) - f(x)dx

® I(x) is the indicator function Failure Region
(rare failure events)

1(x)=1

® Importance Sampling
® Ppoy = J1(x) - f(x)dx

= [1(x) -- g(x)dx

® Likelihood ratio or weight: 1) N
g(x)

® Samp|eS W|th h|gher I|kel|h00d I’atIO haS o Fa|||ng Samp|es closed to nominal
high impact to the estimation of Py case has high weights.
o Larger f(x), Smaller g(x) « Weight can be extremely largle

® Weight f(x)/g(x) might be extremely
large at high dimensionality

Scale of likelihood ratios:




To Capture More Important Samples

® Spherical Sampling

® Shift the mean to the failing sample with minimal norm
o Min-norm point )

® Importance Sampling Recap
0 Prau = [1(x)- 25 g(x)dx

o Samples with smaller norm has higher importance

— Smaller norm =» closer to mean =» larger f(x)

Scale of likelihood ratios:

Spherical sampling[PATEL0]

® EXxisting Importance Sampling approaches shift the sample mean to a given point

® Do NOT cover multiple failure regions T

x

SER T

; .
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shifted mean on the boundary shifted mean on the centroid
of failure region(s) the failure region(s)

[DATEL0] M. Qazi, M. Tikekar, L. Dolecek, D. Shah, and A. Chandrakasan, “Loop flattening and spherical sampling: Highly efficient model reduction techniques for SRAM yield
analysis,” in DATE'2010




Hyperspherical clustering and sampling (HSCS)

® Hyperspherical Clustering and Sampling (HSCS)['SPD16]

® \Why Clustering?
® Explicitly locating multiple failure regions

® Why Hyperspherical?

® Direction (angle) of the failure region is more important
o Failure regions at the same direction can be covered with
samples centered at one min-norm point
o Failure regions at different directions needs to be covered with
samples centered at multiple points

® Hyperspherical Sampling?
® Explicitly drawing samples around those failure regions




[ISPD16] Wei Wu, Srinivas Bodapas

Hyperspherical clustering and sampling (HSCS)

® Phase 1: Hyperspherical clustering: identify multiple failure regions

® Cosine distance v.s. Euclidean distance
o Pay more attention to the angle over the absolute location

Eu.clideanDistance(Xm., X(Q)) = ' XM _x® ‘
YOI x@)
XX

CosineDistance(X(l)., X(Q)) =1-

/ Hyperspherical Clustering: \ Importance Sampling:
Identifying multiple failure regions

Distribution of process ] Spherical Weighted I M Locate Min-norm Modified
variation parameters : Pre-sampling Spherical k-means : Points Mixture IS

or Rare Event Analysis with Multiple Failure Region Coverage”.

Failure probability

ISPD 2016




Hyperspherical clustering and sampling (HSCS)

® Phase 1: Hyperspherical clustering: identify multiple failure regions
® lIteratively update cluster centroid

® Samples are associated with different weight during clustering
o Cluster centroid are biased to more important samples (with higher weights)

Algorithm 1 Weighted Spherical K-Means Algorithm

Input: A set of M failed samples: X = {X(1) X2 x(M)}
Sample weights: w®) w(2) _ w(M)
Number of initial clusters: k
Output: Cluster label for samples: Y = {y1) ¢ (M)}
Updated number of clusters: k
1: Randomly initialize the unit length cluster centroids U =
{pW, 1@ uk)},
2: repeat
B Cluster Assignment (update )):

For each sample X (9, set y(*) = argmax X(i)T;L(j);
J

Remove Empty Clusters (update k)
Remove X; if X; = {X®|y() = j} = 0;
Update number of cluster k;

Weighted Centroid Update (update U4):

For cluster k, let X; = {X(9]y(?) = j}, update centroid as
puld) = meexj w® X (@)
pld) = @y ”‘U,_(J')”;

6: until <) remains unchanged >

7: Return YV and k;

[ISPD16] Wei Wu, Srinivas Bodapati, and Lei He, “Hyperspherical Clustering and Sampling for Rare Event Analysis with Multiple Failure Region Coverage”. ISPD 2016




Hyperspherical clustering and sampling (HSCS)

® Phase 2: Spherical sampling: draw samples around multiple min-norm points
® Locate Min-norm Points via bisection

Algorithm 2 Locate min-norm points for each cluster with
bisection
Input: Minimal radius of existing failure samples, R
Output: Radius of min-norm point: Riin
1: Rmam = R;
2! Rpmin =0;
3: repeat
. R= (Rmam + Rmin)/2§
simulate a small set of samples at Radius = R in current
cluster;
if any failed sample captured then
Rmaz = R;
else
: Rmin — R;
10: end if
11: until Rmaz — RBmin < Rihreshold .
Distribution of proc 12: Return R; Modified

variation parameters Mixture IS

Importance Sampling:

P Y Y T

[ISPD16] Wei Wu, Srinivas Bodapati, and Lei He, “Hyperspherical Clustering and Sampling for Ra




Hyperspherical clustering and sampling (HSCS)

® Phase 2: Spherical sampling: draw samples around multiple min-norm points
® Avoid instable weights: f(X)

© Prgn = [1(x) - L2 g(x)dx

g -
o Where g(x) (1 - @) Ty custers Bif (X — C)

o g(x) sample ultiple min-norm points

o Mg always bounded byi

gx)

Hyperspherical Clustering:

Distribution of process 3 Spherical Weighted I M Locate Min-norm Modified

variation parameters : Pre-sampling Spherical k-means ! : Points Mixture IS Fallure probability

[ISPD16] Wei Wu, Srinivas Bodapati, and Lei He, “Hyperspherical Clustering and Sampling for Ra




Qutline

® Background
® Why statistical circuit analysis, high sigma analysis?
® Limitation of existing approaches.

® Hyperspherical Clustering and Sampling (HSCS)
® Importance Sampling
® Applying and optimizing clustering algorithm for high sigma analysis (Why spherical?)
® Deterministically locating all the failure regions
® Optimally sample all failure regions

® Experimental Results: very accurate and robust performance
® Experimental on both mathematical and circuit-based examples




Demo on mathematically known distribution

® 2-D distribution with 2 known failure regions (7.199e-5)
o S1 ={X||X| >38and ¢(X) € [, 27|}

o S; = {X||X|| >3.9and ¢(X) € [57, 37|} Step2: Clustering Potential clustering failure
5

Accept

. - -, 2 l". .
* - + £
H
¥ % s kA .
N B Fail
. S
Faoen " * al
. LR
. Faa 44 ST v L
i e 0T S F oo
M

.
PRSI AP
EAEREEEE

. .‘:-::'w".v Ak Aot S
ROt R o ) W g
4 -2 9 2 4 6 8 _4 o 0 2

x1
Can be avoided by random initialization

Stepl: Spherical Presampling Step3&4: locate min-norm points and IS Results:
| ' O Accept Pt e, |+ Acent Theoretical: 7.199e-5
i B - U L HSCS: 7.109e-5




A real-life example with multiple failure regions

® Charge Pump (CP) ina PLL

__ Analog Analog

Digital
— |

PFD: phase frequency detector;
CLK CP: Charge pump
> FD: frequency divider;
- VCO: voltage controlled oscillator

|l Jown

Up J
q

I Vm‘l

PFD

Mismatch between MP2 and MN5 may
result in fluctuation of control voltage,
which will lead to “jitter” in the clock.

CSle [

[DAC14] Wu, Wei, W. Xu, R. Krishnan, Y. Chen, L. He. “REscope: High-dimensional Statistical Circuit Simulation towards Full Failure Region Coverage”, DAC 2014




A real-life example with multiple failure regions

® Two setups of this circuit

® Low dimensional setup
® For demonstration of multiple failure regions
® 2 random variables, V;, of MP2 and MN5

Failing Samples with relaxed boundary
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® High dimensional setup
® A more realistic setup

® 70 random variables on all 7 transistors (ignore the variation in SW’s)




Compared with other importance sampling methods

® |mportance samples drew by HDIS, Spherical Sampling, and HSCS
® A’s are the sample means of different IS implementations.

%  Failed Samples - Accepted Samples

o
=
5
=
=

\th of MP2

0.45 0.5 0.55
Vth of MN5
(a) MC with 3000 samples

0.45 0.5 0.55
Vith of MN5
(b) HDIS with 1000 samples

Vth of MP2
Vth of MP2

-0.5¢1 -0.5¢

055 - - - _0.55 " T -
04 045 05 055 06 04 045 05 055 06

Vth of MN5 Vth of MN5
(c) SPIS with 1000 samples (d) Proposed HSCS with 1000 samples




Accuracy and Speedup

® On high dimensional setup (70-dimensional)
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About 700X speedup over MC

(b) Standard Deviation of Pfail v.s. # of samples

Table 1: Accuracy and efficiency evalution on 70-dimensional charge pump circuit

Monte Carlo

HDIS [8]

SpIS [6]

Proposed HSCS with 10 replications

failure probability

4.904e-5

3.9e-3

8.788e-7

3.89e-5 ~ 5.88e-5 (mean 4.82e-5)

Total #sim. runs

1.584e7

3.8e4

>T7.4eb

4.6e3 ~ 5.5e4 (mean 2.3e4)

#sim. for presampling

#sim. for IS

1l.1le4d

4e3

4.2e3

3.8e4

>Teb

410 ~ 5.1ed (mean 1.9e4)

® Determine the # of clusters in HSCS




Robustness

® HSCS is executed with 10 replications, yielding very consistent results.
® Failure rate: : 3.89e-5 ~ 5.88e-5 (mean 4.82e-5, MC: 4.904e-5)
® # of simulation: 4.6e3 ~ 5.5e4 (mean 2.3e4, MC: 1.584e7)

std(Pfail) / Pfail

(b) Standard Deviation of Pfail v.s. # of samples




Summary

® Deterministically locating all the failure regions
® Cluster samples based on Cosine distance instead of Euclidean distance
® Center of failure regions are biased to important samples (higher weights)

® Optimally sampling all the failure regions
® Locate the min-norm points of each failure region
® Shift the sampling means to the min-norm points

® Very accurate and robust performance
® On mathematical and circuit-based examples with multiple replications




Thank you for attention!

Please address comments to weiw@seas.ucla.edu




Determine the # of Clusters

Maximization target

40 60
Targeted number of clusters

Figure 11: Clustering maximization objective while
changing the targeted number of clusters

—8— Actual # of clusters
Targeted # of clusters

Actual number of clusters

40 60 80
Targeted number of clusters

Figure 12: Number of actually clusters may be small
o GO baCk than the targeted number of clusters




