Hyperspherical Clustering and Sampling for Rare Event Analysis with Multiple Failure Region Coverage

Wei Wu¹, Srinivas Bodapati², Lei He^{1,3}

1 Electrical Engineering Department, UCLA

2 Intel Corporation

3 State Key Laboratory of ASIC and Systems, Fudan University, China

Why statistical circuit analysis? - Process Variation

- Process Variation
 - First mentioned by William Shockley in his analysis of P-N junction breakdown^[S61] in 1961
 - Revisited in 2000s for long channel devices [JSSC03, JSSC05]
 - Getting more attention at sub-100nm [IBM07, INTEL08]
- Sources of Process Variation

0.78V threshold (A)

Random dopant fluctuations: both transistor has the same number of dopants (170) - Courtesy of Deepak Sharma, Freescale Semiconductors

Base Line

Line-edge and Line-width Roughness (LER and LWR)

-Courtesy of Technology and Manufacturing Group, Intel Corporation

Gate oxide thickness: -Courtesy of Professor Hideo Sunami at Hiroshima University

[S61] Shockley, W., "Problems related to p-n junctions in silicon." Solid-State Electronics, Volume 2, January 1961, pp. 35–67.

[JSSC03] Drennan, P. G., and C. C. McAndrew. "Understanding MOSFET Mismatch for Analog Design." IEEE Journal of Solid-State Circuits 38, no. 3 (March 2003): 450–56.

[JSSC05] Kinget, P. R. "Device Mismatch and Tradeoffs in the Design of Analog Circuits." IEEE Journal of Solid-State Circuits 40, no. 6 (June 2005): 1212–24.

[IBM07] Agarwal, Kanak, and Sani Nassif. "Characterizing process variation in nanometer CMOS." Proceedings of the 44th annual Design Automation Conference. ACM, 2007.

[Intel08] Kuhn, K., Kenyon, C., Kornfeld, A., Liu, M., Maheshwari, A., Shih, W. K., ... & Zawadzki, K. (2008). Managing Process Variation in Intel's 45nm CMOS Technology. Intel Technology Journal, 12(2).

Evolution of Process Variation

Higher Density → Rare failure event matters

1) 10⁶ independent identical standard cells
 2) 10⁻⁶ failure probability

Probability of Single Bit Failure: $1-(0.999999)^{1,000,000} = 0.6321$

Smaller dimension → Higher impact of process variation

Rare Event Analysis helps to debug circuits in the pre-silicon phase to improve yield rate

Estimating the Rare Failure Event

- Rare event (a.k.a. high sigma) tail is difficult to achieve with Monte Carlo
 - # of simulations required to capture 100 failing samples

Sigma	Probability	# of Si	mulations ¹
1	0.15866		700
2	0.02275		4,400
3	0.00135		74,100
4	3.17E-05		3,157,500
5	2.87E-07		348,855,600

High sigma analysis is required for highly-duplicated circuits and critical circuits
 Memory cells (up to 4-6 sigma), IO and analog circuits (3-4 sigma)¹

• How to efficiently and accurately estimate P_{fail} (yield rate) on high sigma tail?

Executive Summary

- Background
 - Why statistical circuit analysis, high sigma analysis?
 - Existing approaches and limitations.
- Hyperspherical Clustering and Sampling (HSCS)
 - Importance Sampling
 - Applying and optimizing clustering algorithm for high sigma analysis (Why spherical?)
 - Deterministically locating all the failure regions
 - Optimally sample all failure regions
- Experimental Results: very accurate and robust performance
 - Experimental on both mathematical and circuit-based examples

High Sigma Analysis – more details about the tail

- Draw more samples in the tail
- Analytical Approach
 - Multi-Cone^[DAC12]
- Importance Sampling^[DAC06]
 - Shift the sample distribution to more "important" region
- Classification based methods^[TCAD09]
 - Filter out unlikely-to-fail samples using classifier
- Markov Chain Monte Carlo (MCMC)^[ICCAD14]
 - It is difficult to cover the failure regions using a few chain of samples

6

[DAC12] Kanj, Rouwaida, Rajiv Joshi, Zhuo Li, Jerry Hayes, and Sani Nassif. "Yield Estimation via Multi-Cones." DAC 2012 [DAC06] R. Kanj, R. Joshi, and S. Nassif. "Mixture Importance Sampling and Its Application to the Analysis of SRAM Designs in the Presence of Rare Failure Events." DAC, 2006 [TCAD09] Singhee, A., and R. Rutenbar. "Statistical Blockade: Very Fast Statistical Simulation and Modeling of Rare Circuit Events and Its Application to Memory Design." TCAD, 2009 [ICCAD14] Sun, Shupeng, and Xin Li. "Fast Statistical Analysis of Rare Circuit Failure Events via Subset Simulation in High-Dimensional Variation Space." ICCAD 2014

Challenges – High Dimensionality

- High Dimensionality
 - Analytical approaches: complexity scales exponentially to the dimension.
 - o # of cones in multi-cone
 - IS: can be numerical instable at high dimensional
 o Curse of dimensionality^[Berkeley08, Stanford09]
 - Classification based approaches: classifiers perform poorly at high dimensional with limited number of training samples.
 - MCMC: It is difficult to cover the failure regions using a few chain of samples

[Berkeley08] Bengtsson, T., P. Bickel, and B. Li. "Curse-of-Dimensionality Revisited: Collapse of the Particle Filter in Very Large Scale Systems." *Probability and Statistics: Essays in Hono of David A. Freedman* 2 (2008): 316–34. [Stanford09] Rubinstein, R.Y., and P.W. Glynn. "How to Deal with the Curse of Dimensionality of Likelihood Ratios in Monte Carlo Simulation." *Stochastic Models* 25, no. 4 (2009): 547–68. [DAC14] Mukherjee, Parijat, and Peng Li. "Leveraging Pre-Silicon Data to Diagnose out-of-Specification Failures in Mixed-Signal Circuits." In DAC 2014

Challenge – Multiple Failure regions

- Failing samples might distribute in multiple disjoint regions
 - A real-life example with multiple failure regions: Charge Pump (CP) in a PLL

[DAC14] Wu, Wei, W. Xu, R. Krishnan, Y. Chen, L. He. "REscope: High-dimensional Statistical Circuit Simulation towards Full Failure Region Coverage", DAC 2014

Outline

Background

- Why statistical circuit analysis, high sigma analysis?
- Limitation of existing approaches.

Hyperspherical Clustering and Sampling (HSCS)

- Importance Sampling
- Applying and optimizing clustering algorithm for high sigma analysis (Why spherical?)
- Deterministically locating all the failure regions
- Optimally sample all failure regions
- Experimental Results: very accurate and robust performance
 - Experimental on both mathematical and circuit-based examples

Importance Sampling

- A Mathematic interpret of Monte Carlo

 P_{Fail} = ∫ I(x) ⋅ f(x)dx
 I(x) is the indicator function
- Importance Sampling • $P_{Fail} = \int I(x) \cdot f(x) dx$ $= \int I(x) \cdot \frac{f(x)}{g(x)} \cdot g(x) dx$
- Likelihood ratio or weight: $\frac{f(x)}{g(x)}$
 - Samples with higher likelihood ratio has high impact to the estimation of P_{fail}
 Larger f(x), Smaller g(x)
 - Weight f(x)/g(x) might be extremely large at high dimensionality

To Capture More Important Samples

- Existing Importance Sampling approaches shift the sample mean to a given point
 - Do **NOT** cover multiple failure regions

[DATE10] M. Qazi, M. Tikekar, L. Dolecek, D. Shah, and A. Chandrakasan, "Loop flattening and spherical sampling: Highly efficient model reduction techniques for SRAM yield analysis," in DATE'2010

- Hyperspherical Clustering and Sampling (HSCS)^[ISPD16]
- Why Clustering?
 - Explicitly locating multiple failure regions
- Why Hyperspherical?
 - Direction (angle) of the failure region is more important
 - Failure regions at the same direction can be covered with samples centered at one min-norm point
 - Failure regions at different directions needs to be covered with samples centered at multiple points
- Hyperspherical Sampling?
 - Explicitly drawing samples around those failure regions

• Phase 1: Hyperspherical clustering: identify multiple failure regions

- Cosine distance v.s. Euclidean distance
 - o Pay more attention to the angle over the absolute location

$$EuclideanDistance(X^{(1)}, X^{(2)}) = \left\| X^{(1)} - X^{(2)} \right\|$$
$$CosineDistance(X^{(1)}, X^{(2)}) = 1 - \frac{X^{(1)T} X^{(2)}}{\|X^{(1)}\| \|X^{(2)}\|}$$

• Phase 1: Hyperspherical clustering: identify multiple failure regions

- Iteratively update cluster centroid
- Samples are associated with different weight during clustering
 - o Cluster centroid are biased to more important samples (with higher weights)

- Phase 2: Spherical sampling: draw samples around multiple min-norm points
 - Locate Min-norm Points via bisection

- Phase 2: Spherical sampling: draw samples around multiple min-norm points
 - Avoid instable weights:

•
$$P_{Fail} = \int I(x) \cdot \frac{f(x)}{g(x)} \cdot g(x) dx$$

• Where $g(x) \neq \alpha f(x) + (1 - \alpha) \sum_{\forall \ clusters} \beta_i f(X - C_i)$
• $g(x)$ samples around multiple min-norm points
• $\frac{f(x)}{g(x)}$ is always bounded by $\frac{1}{\alpha}$

Outline

Background

- Why statistical circuit analysis, high sigma analysis?
- Limitation of existing approaches.
- Hyperspherical Clustering and Sampling (HSCS)
 - Importance Sampling
 - Applying and optimizing clustering algorithm for high sigma analysis (Why spherical?)
 - Deterministically locating all the failure regions
 - Optimally sample all failure regions

• Experimental Results: very accurate and robust performance

• Experimental on both mathematical and circuit-based examples

Demo on mathematically known distribution

- 2-D distribution with 2 known failure regions (7.199e-5)
 - $S_1 = \{X \mid ||X|| > 3.8 \text{ and } \phi(X) \in [\frac{2}{3}\pi, \frac{3}{4}\pi] \}$
 - $S_2 = \{X \mid ||X|| > 3.9 \text{ and } \phi(X) \in [\frac{4}{3}\pi, \frac{3}{2}\pi] \}$

Can be avoided by random initialization

Step1: Spherical Presampling

Step3&4: locate min-norm points and IS

Results: Theoretical: 7.199e-5 HSCS: 7.109e-5

A real-life example with multiple failure regions

Charge Pump (CP) in a PLL

A real-life example with multiple failure regions

Two setups of this circuit

- Low dimensional setup
 - For demonstration of multiple failure regions
 - 2 random variables, V_{TH} of MP2 and MN5

- High dimensional setup
 - A more realistic setup
 - 70 random variables on all 7 transistors (ignore the variation in SW's)

Compared with other importance sampling methods

Importance samples drew by HDIS, Spherical Sampling, and HSCS
 Δ's are the sample means of different IS implementations.

Accuracy and Speedup

(b) Standard Deviation of Pfail v.s. # of samples

About 700X speedup over MC

Table 1: Accuracy and efficiency evalution on 70-dimensional charge pump circuit

	Monte Carlo	HDIS [8]	SpIS [6]	Proposed HSCS with 10 replications
failure probability	4.904e-5	3.9e-3	8.788e-7	$3.89e-5 \sim 5.88e-5 \pmod{4.82e-5}$
Total $\#$ sim. runs	$1.584\mathrm{e}7$	$3.8\mathrm{e}4$	>7.4e5	$4.6e3 \sim 5.5e4 \ (mean \ 2.3e4)$
#sim. for presampling	_	1.1e4	4e3	4.2e3
#sim. for IS		3.8e4	>7e5	$410 \sim 5.1e4 \text{ (mean } 1.9e4\text{)}$

Determine the # of clusters in HSCS

Robustness

HSCS is executed with 10 replications, yielding very consistent results.

- Failure rate: : 3.89e-5 ~ 5.88e-5 (mean 4.82e-5, MC: 4.904e-5)
- # of simulation: 4.6e3 ~ 5.5e4 (mean 2.3e4, MC: 1.584e7)

Summary

- Deterministically locating all the failure regions
 - Cluster samples based on Cosine distance instead of Euclidean distance
 - Center of failure regions are biased to important samples (higher weights)

Optimally sampling all the failure regions
 Locate the min-norm points of each failure region
 Shift the sampling means to the min-norm points

- Very accurate and robust performance
 - On mathematical and circuit-based examples with multiple replications

Thank you for attention!

Please address comments to weiw@seas.ucla.edu

Determine the # of Clusters

Figure 11: Clustering maximization objective while changing the targeted number of clusters

Figure 12: Number of actually clusters may be small than the targeted number of clusters

