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Abstract—The impact of process variations continues to grow
as transistor feature size shrinks. Such variations in trasistor
parameters lead to variations and unpredictability in circuit
output and may ultimately cause them to violate specificatins
leading to circuit failure. In fact, timely failures in crit ical circuits
may lead to catastrophic failures in the entire chip. As such
statistical modeling of circuit behavior is becoming incrasingly
important. However, existing statistical circuit simulation ap-
proaches fail to accurately and efficiently analyze the higtsigma
behavior of probabilistic circuit output. To this end, we propose
PDM (Piecewise Distribution Model) - a piecewise distribuion
modeling approach via moment matching using maximum en-
tropy to model the high sigma behavior of analog/mixed-sigal
(AMS) circuit probability distributions. PDM is independe nt of
the number of input dimensions and matches region specific
probabilistic moments which allows for significantly greater
accuracy compared to other moment matching approaches.
PDM also utilizes Spearman’s rank correlation coefficient o
select the optimal approximation for the tail of the distribution.
Experiments on a known mathematical distribution and various
circuits obtain accurate results up to 4.8 sigma with 2-3 orérs of
speedup relative to Monte Carlo. PDM also demonstrates bett
accuracy while compared against other state-of-the-art stistical
modeling approaches, such as maximum entropy, importance
sampling, and subset simulation.

Index Terms—Moment matching, High dimensional, Maxi-
mum Entropy, Probability density function, Circuit modeli ng

I. INTRODUCTION

A

IEEE

probability may lead to catastrophic results in the enthipc
Consequently, such “rare event” failures must be accuyratel
and efficiently modeled to maximize the effective yield of a
circuit.

As industry moves towards more energy efficient chips,
minimizing power consumption becomes increasingly impor-
tant. In such designs, low supply voltages (VDD) are often
used to reduce power. However, while VDD is explicitly
reduced the overdrive voltag&f, — V) is implicitly reduced
[6]. In the presence of/; variations from the manufactur-
ing process, transistors may enter the subthreshold operat
region causing a strongly non-linear circuit behavior. sThi
non-linear behavior translates to circuit behavior disttions
becoming strongly non-Gaussian (see Fig. 14). Conseguentl
when modeling this behavior for yield analysis, it is neeegs
to consider the inherent non-linearity that arises due #® th
aforementioned reasons.

Although there are many methods that attempt to model
overall circuit behavior [1], [3], [7], very few of them ef-
ficiently model the high sigma behavior of strongly non-
Gaussian distributions. One brute force method is Monte
Carlo (MC), which is considered to be the gold standard
approach; it involves repeated sampling and simulation to
extract an approximate distribution of circuit behavioi. [8
Although Monte Carlo is highly accurate, it is infeasible fo
yield analysis with small failure probability because ifjuées

S transistor feature size continues to shrink, the impagfjions of samples/simulations for an accurate measunéme
of process variations on circuit behavior, such as delay,ing it runtime prohibitive despite some parallelizatio

or gain, grows and cannot be neglected [1], [2], [3], [4lefforts [9], [10], [11]. Moreover, if any design changes are

[5]. Under these variations, circuit behavior is no longer @

troduced in the circuit we must repeat these simulations

deterministic value and must be characterized by a rand@,iher million or more times.
variable rather than a nominal value. These variations cany order to improve the efficiency of yield analysis, fast

cause significant_ circuit perform_ance degradf';ltio_n thgt MAC approaches such as Importance Sampling (IS) [12], [13],
not meet the design spec and fail. As such, circuit relltyblll[ML [15], [16], [17], [18], and classification based apaches

has become an area of growing concern. In particular, fﬂrg
circuits that are repeated millions of times, a small falur

], [20] were proposed to obtain high accuracy with a
minimal number of samples. However, Importance Sampling
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variables due to the “curse of dimensionality” which causes
the reweighing process to become degenerate and unbounded
[21], [22]. Classification based approaches, such as titatis
Blockade [19], [23], attempt to build a linear classifier to
screen out/block samples that are unlikely to cause failure
and evaluate these “likely-to-fail” samples to calculafaibure
probability. However, the classifier used in Statisticald{ade
[19], [23] does not account for the non-linearity between
process variables and circuit outputs, or the multiplicity
input failure regions, leading to large errors. The nordine
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classifier separates the ‘“likely-to-fail” samples with teet two segments in the rest of this paper. The first distribytion
accuracy [20], but has difficulty in accurately defining th&egmentl, matches moments that are accurate only in the
“likely-to-fail” samples. On the other hand, defining only a&ody/bulk of the distribution. The second distribution,gSe
small portion of samples as “likely-to-fail” leads to skedve ment2, matches moments that are accurate only in the high
classes that require separation - while adding more sampdggma/tail region of the distribution and models the tail of
to the “likely-to-fail” side balances the classes, it couldke circuit behavior. Both distributions are constructed gsthe
classification based approaches inefficient. maximum entropy moment matching technique but differ by
Among others, the Scaled Sigma Sampling (SSS) [24] anding two different setsof moments. The moments in Seg-
subset simulation (SUS) [25] approach the rare failure promentl are obtained by using circuit behavior sample moments
ability via different avenues. SSS draws samples by scalinglculated directly from the original input (process vioa)
up the standard deviation (sigma) of the original distitiut distributions. The moments in Segment2 are obtained using
while using the same mean. Failure probabilities are catedl sample moments calculated from input distributions that ar
at different scaling factors to extrapolate the failurelgability shiftedtowards regions that are more likely to fail. The details
under the original distribution, i.e. scaling factor eqt@ll of moment calculation are elaborated upon in Section IV.
[24]. However, SSS is susceptible to accuracy loss due toThe optimal Segmentl distribution is selected using Spear-
the extrapolation requirement. Alternatively, SUS apph®s man’s rank correlation coefficient to analyze the monotonic
the rare failure probability as the production of severalgé behavior of the CDF. The Segment2 distribution is assumed
conditional probabilities estimated in multiple phase$][2 to be an exponential distribution. Because this distrdyuis
Samples in each phase are generated with the aid of dwmstructed from shifted moments, its probability must @e r
Markov Chain Monte Carlo (MCMC) method. weighed and is done so using conditional probability and a
Unfortunately, the majority of existing approaches do nafcaling factor that corrects for continuity between the -Seg
efficiently handle a significantly high dimensional problemment2 distribution and the true model of the tail distribati
While [12], [13], [14], [15], [16] are only verified on SRAM  PDM has a constant complexity in terms of input dimen-
cells with 6 variation parameters, there are still some apions as it works solely in the output (circuit behavior) dam
proaches that do handle the high dimensional problem, su€kperiments on both a mathematically known distributiod an
as [17], [24], [25]. Furthermore, most existing approacties circuits demonstrate the method is accurate up to 4.8 sigma f
not estimate the overall PDF of circuit behavior, requiringon-Gaussian distributions with more than 2 orders of speed
repetitive sampling to estimate different critical pointausing relative to Monte Carlo, which is typically sufficient for allog
significant runtime overhead. circuits that are reused, such as differential amplifieias b
To combat the dimensionality issue of the above metbircuit, or even PLLs, level shifters, etc.
ods, we introduced a moment matching technique based omhe performance of PDM is compared against the maximum
Maximum Entropy [26] (referred to as MAXENT), which isentropy moment matching technique [26], high dimensional
elaborated upon in Section Ill. The method is novel becauigeportance sampling [17], SUS [25], and Monte Carlo. The
it uses circuit output behavior (e.g. delay) as its only inpwstatistical modeling approaches are compared on both low-
and therefore performs moment matching solely in the outpditnensional and high-dimensional problems, in addition to
domain. Consequently, the method is constant in dimensidadeal (mathematical) distributions and realistic cirsuiRun-
ality and thus does not fall to the dimensionality issues time is evaluated by the number of samples required by each
Importance Sampling and classifier methods outlined abowdgorithm, and accuracy is compared against Monte Carlo.
We observed that MAXENT is very accurate in the bulk of The rest of the paper is organized as follows. Section I
the distribution, but is often inaccurate in the tail regiinere presents background on general statistical modelingidect
rare events are modeled. This limitation is because MAXENTI introduces a detailed derivation of the maximum entropy
uses only one set of moments that are accurate in the lewoment matching technique, along with results on its applic
sigma region but inaccurate in the tail. Obtaining moment®n to circuit modeling [26]. Section IV presents the prepd
that are accurate in the tail of the distribution (also knowpiecewise distribution model and highlights the differehe-
as the high sigma region) requires both a large number t@feen it and the general maximum entropy moment matching
samples to obtain accurate moments and knowledge of whielghnique. Section V evaluates the performance of PDM on
exact moments reflect behavior in the tail of the distributio the mathematically known distribution, one digital cirtgind
which is often unknown [27]. Consequently, the distribatioone analog circuit, where all distributions are non-Gaarssi
that MAXENT uses is formulated on a global optimizatiorsection VI concludes this paper and presents some topics for
framework that attempts to minimize overall error, makitg future work.
difficult to capture the high sigma behavior in hon-Gaussian
distributions. Il. BACKGROUND
To address both the issue of high-dimensionaditgl non- . .
Gaussian distributions while maintaining high accuracy af': General Statistical Modeling
efficiency, we propose a piecewise distribution model (PDM) Fig. 1 shows the flow of performing statistical simulation
that uses moment matching via maximum entropy to builsh a circuit. Instead of simulating a circuit with deternsiing
multiple separate, region-based distributions of cirt@hav- parameters a single time, we model the circuit parameters,
ior. Without loss of generality, we consider a distributias such as effective channel length; or oxide thickness,,,
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circuit response that givesl&% failure rate, we would ask for
the “1 sigma point” of the PDF. Note that the aforementioned
probability and Z score methods work for both ends of the tail
verd vor:2 I:> Circuit Simulator of a PDF.
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Fig. 1. Flowchart for Circuit Simulation
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as ra.n(fi,om Va”a_bles' These varl_al?les f(,)rm the par.ame'ylegr. 2. Required samples for various sigma (probability)ntso
domain” as the input of the statistical simulation. Without

losing generality, we model these variations as mdepemdenIn typical yield analysis, we require a failure rate of at

Gau.55|an d|.str|but|ons. . ) least 0.003167% or approximately 4 sigma. Obtaining this
Given N input random variables, we draw a single samsopapility would require one failure evesi, 575 samples.
ple z; which can be represented as the vector = |4 many cases, this is the “largest” probability that is rieeg
[z1,1, 21,2, ...;21,n5]. By feeding samplez; to a SPICE- 44 e typically need up to the 4.8 or 5 sigma point in the
accurate circuit simulator, we can obtain a circuit reSBONBDOF, which corresponds to roughty4E6 samples for one
y1. The circuit simulator acts as a non-linear map from inpykiyyre Furthermore, simulating this many samples is lyver
samples to circuit response. These circuit responses, &iChime consuming, making straightforward Monte Carlo rurim
50% delay or \:oltage at a node, are considered part of he)hibitive. Fig. 2 shows the required number of sampleg (o
output domain”. scale) for a given sigma point (linear). We see that evengn lo
Repeating this sampling and simulation process is straigBtale, the required number of samples is non-linear. Aghou
forward Monte Carlo and is used to obtain an estimate more efficient Samp”ng approacheS, e.g. Quasi Monte Car|0,
the distribution/probability density function of circugsponse | atin Hypercube Sampling, etc. [28], might be used, they are
[8]. Depending on the required accuracy of the response, g insufficient to analyze the rare failure event.
required number of samples will change. In some cases, a feW|ternative methods such as Quasi Monte Carlo may be
hundred samples are required to estimate the probability gfiized, however they still require a large number of saespl
a circuit response around the nominal value of the PDF. QR it can be shown that as the dimensionality of the sampling
the other hand, it requires millions or even more samples §gace increases (in this case, the input domain), the conver
model the tail of the distribution, corresponding to theerargence rate of QMC and MC are similar [28]. Consequently, it
failure events, which is important for highly replicatedatiit s necessary to develop efficient algorithms that minimiee t
cells or critical circuit components. number of samples to accurately estimate a very small &ilur
One method of quantifying the required number of sanprobability.
ples for a target probability is simply taking the inverse.
For example, consider a designer that is interested in the
circuit response that will result in a failure rate of 16%.iSh
means that we are interested in a circuit response that has
approximately 16% probability in the tail of the PDF. This Entropy is a measure of uncertainty. When choosing a
failure rate corresponds to approximately 1 failure eveBb6 distribution, one should choose a distribution that maxensi
samples, so a starting point would be drawing 7 sampleéke entropy [29]. By doing this, the distribution is uniquel
simulating each and selecting the largest value. Howelier, determined to be maximally unbiased with regard to missing
preceding case assumes that we will determinately seeetifaiinformation, while still agreeing with what is known [29].
sample every 6.25 which may not be true due to the lar@nsequently, the distribution with the maximum entroplf wi
variations and unpredictability in the circuit. Consectligrin  create a model based solely on the true information that is
order to have a more confident estimate, we may require tipabvided and will be less susceptible to assumptions from
we draw enough samples such that we have 5 failures, i.e. messing information. The entropy” of a distributionp(x) is
would draw 32 samples. By using basic probability, we ddefined in (1). To select the distribution with the least rnigs
not make any assumptions about the shape of the circuit PDFormation, we maximize the entropy function with respiect
allowing for an unbiased estimate. Furthermore, to simplifa set of probabilistic moment constraints (2), as a proltgbil
the relationship between estimated probability (failuatey distribution can be completely defined by its set of moments
and required number of samples, we utilize the Z score off20]. When applying the maximum entropy method to circuit
standard normal distribution which is typically referredas simulation algorithms, we consider probabilistic sample-m
the “sigma” value [27]. For example, instead of asking far thments of circuit response with moment ordet 0,1, ..., k.

1. M AXIMUM ENTROPY METHOD FORSTATISTICAL
CIRCUIT PERFORMANCEMODELING
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representing the area and is thus folded into equations®) a
W = / z) log p(z)dx (1) (10). For further details in the derivation, we refer thedera
towards [33].

zip(x)ds = pi, 1=0,1,.., k. 2 k
/ ple)dz = p @ P=mZ+> A ©)

To maximize (1) we first introduce Lagrange multipliers, =1
resulting in the Lagrangian function
Z =exp(Ng) = /exp ( Z/\ x ) dx (20)

L=- /( (z) log p(x))dx + Z)\ / z)dz — ;) (3) Now this dual problem can be solved for any valuekof
One approach is using an iterative method such as traditiona
Next, we take partial derivatives df with respect top(x) Newton’s method as shown in [31], [34], [26]. Here, New-
and to find the points where it reaches a maximum, as showen’s method is used to solve for the Lagrangian multipliers

in (5) and (4). A = [Ao, A1,...,Ax] for a corresponding set of moments
i = 0,1,...,k. The standard Newton update equation for
;TL =0 (4) iterationm is shown in (11)
10T
Atm) = A H1 11
oL, 5) (m) = Aem) — H ™53 (11)
op(z) Where the gradient (12) and Hessian (13) are defined as

Taking the derivative with respect foresults in the original

moment constraints from (2) and is redundant informatidre T . k
derivative with respect tp(z) yields (6) ST [ a"exp (— > )\iﬂi) dx
- = i — — = p; — pi(A) (12)
oA k
oL k . feXp — Z /\i,ui dx
(@) = /(logp(x)dx) +1-— {Z /\l(/(x’dx))} =0 (6) i=1

i=0 5T

We can further simplify this by absorbing the constaitito Hij = = i+ (A) = (A5 () (13)

the )y term and combining the finite sum with the integrand
resulting in (7)

VY

k
Ik 2 exp (— > /\iui> dx
Hitj(A) = =L

/ (log p(a / Z Naide) = 0 ™ [ exp (_ i W—) da

Note that the limits on both integrals are identical and are Equation (13) indicates that the dual functidhas a second
typically from oo to —oo for standard probability distributions derivative and that it is positive definite [33]. Conseqlgnt
because the distribution is assumed to be O outside of tie function (9) is everywhere convex which guarantees that
support of random variable. In the case of circuit simulation if a stationary point exists it must be thenique absolute
algorithms, this is also true, i.e. the circuit has maximurd a minimum However, convexity does not ensure that a minimum
minimum operating values and is zero outside these poing®es exist. Consequently, a necessary and sufficient eomdit
Consequently, because the above equation must hold in that a unique absolute minimum exists at a finite valug &f
general case of arbitrary limits, the integrand must be O atteht the moment sequendg;,i = 0,1, ..., k} be completely
we can rearrange terms to solve for the unknown varigbt¢ monotonic [33]. We note that the derivation of such an
as shown in (8). existence condition is outside of the circuit simulatiopito

and we therefore refer to [33] for its derivation.
p(z) = exp ( Z i ) (8)
A. Application to Statistical Circuit Modeling
However, the solution in (8) does not exist for values of We begin by drawing a small humber of samples from

k > 2 [31]. Consequently, [32] propose that we transforrthe input variables and feeding them to a circuit simulator
the constrained problem into an unconstrained problem hy produce a set of outputs. These small number of outputs
utilizing its dual. Utilizing duality allows us to recastdh are realizations of the random variable which are used
original problem of maximizing (3) into its dual form that weto construct the momentg; that are to be matched in the
can minimize. This dual function can be obtained by pluggingptimization. Note that probabilistic moments are tydical
the results of (8) into the Lagrange function (3) resultingts calculated asu; = [ 2'p(z)dz. However, because we have

dual, which is represented by the two functions (9) and (1Gjo prior information about the shape or form of the distri-
We also note that the term, is simply a normalizing factor bution p(z), we cannot use this method. Consequently, we

(14)
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N .
utilize sample momentg; = > z}/N (N is the number vdd
=1

)=
of samples that we draw) to construct the moments for this WL

WL
generic case[27]. By using sample moments, we ensure that | wp5 wp6 |
the requirement for monotonic moments is satisfied because__ s

Mn2 }J I v |

the random variable: is assumed to be always positive (we BL g
can always transform the circuit response to be positive).
Consequently, we are guaranteed that the estimated plitypabi Mnl Mn3
distribution p(x) will be stable.

After obtaining the sample momenjs; for a seti = =
0,1, ...k we perform the maximum entropy moment matching
method using traditional Newton’s method. We initialize thrig. 3. 6T SRAM Circuit Layout
Lagrange multipliers to 0A = [0;0;...; 0], resulting in the
initial guess of the distribution as a uniform distributidrhis
result is reasonable as the uniform distribution inheyehéls
the maximum entropy of all distributions. Next, we let the vb_p_II:IJ__Eh_vb_P
algorithm continue until the successive changes in migtigl
A; are within a user specified tolerance. As such, we obtain a

probability distributionp(x);, wherek denotes the number of | E] E |
moments that are used. II :I

| o Vout o |

B. Preliminary Results using MAXENT vin1 I: |—‘gn2 I: :I
Examples of this work are implemented as the MAX- | |

ENT algorithm and are shown in [26]. We implemented the

proposed algorithm in MATLAB. The first circuit is a 6-T

SRAM bit-cell with 54 variables, while the second circuit is ::ll'm'" Vfb-llflm'n-ll-:l ql'w'"::ll'm
an Operational Amplifier with 70 variables. HSPICE is used +

to simulate these 2 circuits for circuit performance. AlStg
[8] and PEM [1] are used for comparison. PEM is anoth

circuit modeling algorithm that converts probabilistic ments

of circuit performance into corresponding time moments of .
: . constructed using the same set of moments. We can see that
an LTI system then uses Asymptotic Waveform Evaluati

. . PEM is clearly dependent on both the number of moments
(AWE) to match these time moments to the transfer function d number of samples used. In Fig. 5 PEM is unstable when

of the system. AV.VE uses the Pade approximation Wh.'using 18 moments constructed with 200 samples, but becomes
generates poles (eigenvalues) that correspond to the damin

poles of the original system, and also poles that do nsgzlble in Fig. 5b when using 18 moments constructed with

é:[ig. 4. Operational Amplifier Circuit Layout

- 8 0 samples. However, PEM becomes unstable again in Fig.
correspond to the poles of the original system but aCCOL?c when using 18 moments constructed with 300 samples.

for the effects of the remaining poles [35]. Clearly, increasing the number of samples has produced a
Fig. 3 shows a schematic of the 6T SRAM bit cell Th%et ofyr,ncl>mentslthgat allo us PEM to be s?able ndtfr scgnar'os
reading operation of the cell can either be a success onadail W u !

based on the voltage differendsV’ between the nodes L where it was previously unstable. On the other hand, we can
and BL. If the voltageAV is large enough to be sensed, theRee that MAXENT is stable in all 3 figures regardless of the

. = . number of moments used or the number of samples used to
the reading operation is considered to be successful. Dilneto o
L . : : . construct them. Furthermore, the MAXENT distributionswho
process variations in every transistor, the dischargeviehaf

BL will vary for different cells and conditions. ConsequentlyVery good overl_ap W'th the Monte Cgrlo distributions. .
PEM's sensitivity arises because it uses the Pade approxi-

the designed discharge behavior will have significant tiaria . ; " :
9 g d mation, which can produce small, positive poles, to estmat

and if the behavior is drastically different, the voltagd” tor f . del that i d h
may not be sufficiently large causing a read failure. Fig. a transfer function model that is used tq match moments.
nce PEM uses a transfer function in its model for the

shows a schematic of the Operational Amplifier that was us?’. ibut h o | q he inktabi
We considered the bandwidth of the amplifier as the circfiStriPution, these positive poles can produce the inBtabi
we see above. On the other hand, MAXENT is stable in all

performance to be modeled. ) ) X
of the previous cases. MAXENT is guaranteed to be stable if
N it uses monotonic moments and its stability is not sensitive
C. Stability to the order of moments that are matched or the number of
The stability of the two algorithms is clearly demonstratesamples that are used to produce these moments. Moreover,
in Fig. 5a, Fig. 5b, and 5c¢ which show the performandeecause MAXENT estimates its distribution as a product of
distributions that model the value &V in the 6T SRAM exponential functions, it will never have a negative praligb
circuit. In all 3 figures, both MAXENT and PEM were Consequently, we see that MAXENT is more robust when
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Fig. 5. Stability of PEM and MAXENT under different number sdmples

compared to other moment matching methods such as PEM.

D. Accuracy

Fig. 6 shows the different distributions generated by MAX-
ENT and PEM vs the ground truth distribution from MC
for the Operational Amplifier circuit. We see that using 10
moments, MAXENT does a good job of estimating the overall
shape of the distribution but still lacks some detail. lasiag
the order of moments to 12 produces a distribution that
overlaps extremely well with the ground truth distribution
On the other hand, PEM fails to give an accurate estimate
of the distribution with both 10 and 12 moments. When
moving from 10 to 12 moments with MAXENT, we saw a
significant increase in accuracy. When moving from 10 to 12
moments with PEM, we see essentially no change in accuracy.
Furthermore, we see that PEM produces an unreasonable,
negative probability in its distribution.

To quantify the accuracy results, Tables | and Il shows the
relative error (calculated by (15)) for both MAXENT and PEM
in the 6T SRAM and Operational Amplifier circuits. As we
can see from both tables, MAXENT offers up 1@0% less
error for the OpAmp, and up 7% less error for the SRAM
circuit once we reach a steady-state value. We also note that

Probabilty

error = / (1() - fole)) de

—— Monte Carlo

AWE-based PEM with 10 moments
- - - Maximum Entropy with 10 moments

- -+~ - AWE-based PEM with 12 moments

- -= - Maximum Entropy with 12 moments

5 5
Bandwidth (Hz)

] Fig. 6. Operational Amplifier Accuracy (800 samples)

TABLE |
ACCURACY COMPARISION
Circuit # Samples| Moment Order| PEM MAXENT
Error(%) | Error(%)
6 46.349 11.85
8 30.656 3.988
SRAM 200 10 15.577 3.281
12 9.4457 3.394
14 6.6038 3.181
18 198.97 5.470
10 125.54 30.943
12 116.39 30.881
Op. Amp. 200 14 108.43 5.374
16 102.05 5.506
18 93.793 5.567
20 111.49 5.584
TABLE Il
ACCURACY COMPARISON
Circuit # Samples| Moment Order| PEM MAXENT
Error(%) | Error(%)
6 46.117 11.043
8 30.251 5.331
SRAM 300 10 15.097 6.046
12 11.341 5.818
14 10.74 6.516
18 200 6.222
10 126.51 28.271
12 117.26 3.851
Op. Amp. 800 14 108.40 4.232
16 101.110 3.679
18 94.682 3.465
20 89.264 3.568

although values of variance and kurtosis (moments 2 ance4) ar

1 accurately calculated, the distributions generated usitig 2

and 4 moments are inaccurate. Distributions generated2vith

1 and 4 moments are identical to an Exponential and Gaussian
1 distribution, respectively, due to the mathematical repnta-

. tion of the maximum entropy distribution [36]. This type of

# 1 inaccuracy is present in all moment matching algorithms and

these two orders were therefore excluded from the accuracy

(15)
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IV. PIECEWISEDISTRIBUTION MODEL Here, the sigma value is simply the standard Z-score of a

In the previous section, we saw that MAXENT is a robus%tandard_ Nor_mal distribution?(Z > U)'_ On t_he_oth_er han(_j, )
method for statistical circuit performance modeling. lagan- _the gradler_1t IS constan_t for a Gaussian dl_stnbutlon. This |
tees stability for monotonic moments and offers high acgyralllustrated in Flgl. 8 Wh(';h shows ;he _grqdlent of tge CDF
compared to other statistical modeling algorithms. Howevd®' @ LogNormal (non-Gaussian) distribution vs a Gaussian
we note that MAXENT is a global moment matching approacqi]lstnbutmn. .Here,_ aIFhom_Jgh the LogNormal distributios i
which offers high accuracy in the bulk of the distributiont s ? mathematical dlstr?bu_tlon, we lﬁbe! thﬁg ‘m:{? of the .
unlikely to capture the accuracy in the tail (high sigmajioag Iguré as C|rC_U|t _Be ay|0rt0 emphasize that this ype o
of the distribution. To this end, MAXENT is an insufficientCircuit behavior is of interest. Consequently, we seled th
approach when modeling the high sigma behavior of circlfPtimal Segmentl distribution by choosing the one with a
performance distributions. monotonically increasing gradient.

In this section, we propose PDM (Piecewise Distribution In order to gau’ge the monoto_n|C|ty of_t_he gradient, we
Model) to accurately and effectively model the high sigmra'lJm to Spe_armans rank correlgtlon coejﬁment [3_7]' Ualik
portion of non-linear distributions from circuits in higngen- € conventional Pearon correlation coefficient, whiclectiy
sionality. The motivation behind PDM is to accurately modép_?_asures the cc,)rrelaion beltwgen tw?f_ sets Ef variables, we
the tail distribution of circuit behavior by using regionesiific  Utilize Spearman’s rank correlation coefficient becausesa-
moments. In general, moment matching techniques such Si&es thenonotoniaelationship between two sets of variables.
[1], [26] use moments that may accurately reflect the bulk Gpecifically, the correlation coefﬂmeryi is a measure of .
body of the distribution. However, these global approxiorat how yveII a set qf .data can b,e Qescrlbed using a molnotomc
methods use general probabilistic moments which give vei§nction. A coefficient of +1 indicates strong correlatian t
little information about the high sigma areas and thus £ _mo_notonlcally increasing function while a_coefﬁuent of_—
to accurately model the tail distribution. To this end, PDNM Indicates strong correlation to a monotonically decregsi

utilizes moment matching to approximate the high sigannCtion' To this e_nd,. we measure the gradient of the CDF
distribution by usingregion specific momentshich capture for various body distributions and compare the data set to a

highly accurate information in regions of interest. In gae Monotonically increasing set using Spearman’s Coefficient

an arbitrary number of segments can be used to model tl?é‘d select the distribution with the largest, positive Gioieit.

overall distribution. Without losing generality, we breghe 9 9 compares various Segmentl distributions, each built
total distribution into two segments - the first distributio With @ different number of moments, that are used for approxi

(Segmentl) matches the low sigma region and is accurqigting anon.-Ggus_sian o_listribution.We see that .the coalici
in the body (typically< 40) while the second distribution for 5 of 6 distributions indicates that the gradient data set

(Segment2) matches the high sigma region and is aCCuratésir{nonotomcalIy decreasing or uncorrelated. Howevernethe

the tail (typically> 40). The flow of the method is shown inls a single distribution using 14 moments with a coefficient
Fig. 7 while details are given below. of p = 0.98, indicating it is a monotonically increasing set

and should be used as the optimal Segment 1 distribution. In

general, the optimal Segment 1 distribution may not have 14
A. Building the Segmentl Distribution moments.

To build the Segmentl distribution, we first draw sam- To confirm that this is the optimal choice of the above
ples ¢;;i = {1,...,N;} from input parameter distributions €xample, we compare the estimated data from the selected
f(x;);5 = {1,..,p} wherep is the number of variables. Segmentl distribution (strong Spearman’s correlatiomg o
Next, we simulate these samples using a circuit simulator i@n-selected distribution (poor Spearman’s correlatiamgd
obtain circuit behavior outputg;;i = {1,..., N;}. Finally, the ground truth values as shown in Fig. 10. We see that
sample probabilistic momenjs, are calculated and matchedhe selected distribution matches very well with the ground
using MAXENT as outlined in [26], [33]. Depending ontruth because both distributions are non-Gaussian andiéexhi
the number of moments that are matched, we will obtafionotonically increasing gradients. On the other hand, the
different Segment1 distributions. However, the exact nambdistribution with poor correlation is very inaccurate. Wéize
of moments to be matched is unknown because we do s combination of gradient and Spearman’s correlation to
know which set of moments map to different areas of tHelect the optimal Segmentl distribution used in PDM.
distribution [27]. Consequently, we sweep across a range of
valuesk = 5,7,9,..., K to build multiple Segmentl distribu-
tions and select a single, “optimal” Segmentl distributasn
explained below.

C. Shifting Input Distributions and Building the Segment2
Distribution

The motivation behind shifting the input distributions & t
) ) o draw more samples that yield an output in the tail of the orig-
B. Selecting the Optimal Segment1 Distribution inal circuit behavior distribution. By generating more sdes
One of the key characteristics of non-Gaussian distribgtioin this region, we can generate region specific moments that
is that the gradient of their CDFs are monotonically inciegs are highly accurate in the tail. To obtain momemisthat
i.e. the change in circuit behavior for a fixed change in prolre specific to the tail of the distribution, we must shift the
ability continuously increases as the sigma value inceasmean of the input parameter distributions framto 7 for
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Phase 1: Build and Choose Phase 2: Shift Inputs, Build
Optimal Segment 1 Distribution Segment 2 and Estimate Prg;

»/\ /><\_>

Parameters Performance pﬂm =P(H = terir)

Fig. 7. PDM contains 2 Phases: building the Segmentl digitoib and selecting the optimal Segmentl distributionftisigi input parameters to build the
Segment2 distribution, and estimating the final probabilit

,_‘
1S}
=

- o
.g O Non-Gaussian Distribution o o o 2.5
3 © Gaussian Distribution = '
S5 o2 -
0 n O
= o~ 2|
3 I
g BGround Truth
O - . . . . . . . . Strong Correlation

0 1.5

1 1.5 2 25 5 4 45 5 = Poor Correlation |
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Sigma

Fig. 8. Slope of Gaussian vs Non-Gaussian Distribution ) ) ) .
Fig. 10. Segmentl Comparison using Spearman’s Correl&&sults

1 ‘ M o098
2 Fig. 8. Next, the circuit behavior values are screened tainbt
g wp = §; > t*; k = 1, ..., N5 whereNj is the number of points
ﬁ maie beyondt*. Because the output was screened, we ensure that
58,0_5, W-037 the moments; shall only be reflective of the tail distribution’s
& mozs MOS8 domain and not be polluted by information outside of it.

o
>k

Finally, to build the Segment2 distribution, we calculate
4 moments usingu; = [z'p(xz)dz and match them using
Fig. 9. Spearman’s Correlation of Distributions with Ditiet Moments maximum entropy as in [26], [31], [34], [33]. The motivation
behind using only 4 moments is that this forces the maximum
entropy method to yield an exponential distribution as show
each input parameter individually. To shift the mean, we firfn [36]. The exponential distribution is a good approxiroati
find the largest circuit behaviog,,... from the sety; used of the tail as it is monotonically decreasing and can easily b

when building the Segment1 distribution. The valueypf... obtained using the maximum entropy method.
is directly impacted by the sampling algorithm and number of

samples inN;. Finding the optimaly.,.... is out of the scope _— . . .
of this paper, and th@,,... used in the proposed appllcat|onD Reweighing Segment2 via Conditional Probability
attempts a shift towards the general vicinity of parameter Once the Segment2 distribution is obtained, the probgbilit
samples that produce tail-like circuit behaviors. Eacleuitr for a specified circuit behavidg,.. can be obtained; however,
behaviory; has a corresponding set of input sampjgsfor it will be inherently biased because the input parameterg we
each input parameter= 1, ..., p. The largest circuit behavior shifted to draw more important samples. To resolve thiseissu
Ymaz will have a Samp|e Va|uq for each |nput parameterwe use conditional probablllty to “re- WEIQh probabllmels

j =1,...,p. To obtain the shifted distributions, we simply shiffollows

the meann; of parameterj to the sampley;.

Once the input parameters are shifted, an additid¥ial
samplesg;;i = 1,..., Ny are drawn and simulated yielding
an outputy;;i = 1,..., No. To ensure that the moments WhereH is the random variable associated with the Segment2
are comprised of informationnly in the tail distribution, we distribution, B is the random variable associated with the
must first screen the simulated dgtasuch that only samples Segmentl distribution{,,.. is the circuit behavior whose
that lay in the tail are used. To do this, we simply pick arobability is of interest, and* is the circuit behavior for
circuit behaviort* that separates the Segmentl distributiosigma points. The conditional probability relationship in (16)
and the next distribution, in this case Segment2. The valueworks well when the two distributiond and B are identical,

t* is obtained by selecting a sigma poinin the Segmentl i.e. if we are calculating conditional probability undereon
distribution and extracting the corresponding circuitdebr. distribution, or if they share the same mean. However, this
Typically, s is chosen to be a sigma value between 3 and 4 eguation does not hold true in the proposed algorithm. Fhis i
this is where the long, flat region of the tail begins as shawn demonstrated by rearranging (16) as shown in (17)

8 10 2
Number of Moments Matched in Distribution

P(H > tspec) = P(H > topec| B >t")« P(B>t") (16)
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Before Scaling

P(H > tspec)
P(B > t*) = = °p
B2 = P>t B> )

’

17)
After Scaling

For a new point the relationship is

spec? True Distribution

R

P(H >t,,)=P(H >t |B>t)P(B>t) (18) >
( , ) Fig. 11. Shape Issue in Conditional Probability
PH >t
P(B>t)= — spee 19
R vy B - ]
. EXPERIMENT RESULTS
Rearranging (17) and (19) and equating the common ter _ .
yields ging (17) (19) a g ,&n Experiment Settings
We implemented PDM in MATLAB using simulation out-
/ puts from HSPICE. PDM is compared with Monte Carlo, mo-
> ) . . ; X
P(B>t)= PH > topec) — = P(Hl— Lopec) - ment matching algorithm MAXENT [26], High Dimensional
P(H 2 tspec|B 21*)  P(H > ty,..|B 2(1528) Importance Sampling (HDIS) [17], and subset simulation

. . . 7 (SUS) [25] to d trate that it off ignificant d
Clearly this relationship holds perfectly when the distrib ( ) [25] to demonstrate that it offers significant speedup

i f i ; d4d inator (ioint and (i/_vhile maintaining higher accuracy than other methodolegie
lons from the numerator and denominator (oint an ' CONGRat are targeted towards modeling the high sigma behafior o
tional, respectively) are identical as in importance sangpl

; ircuits.
algonthm_s such as [17]' However, beca_use PDM performs tﬁeThe algorithm was tested against the mathematically known
re-weighing process in the output domain, the modeled tail a

the true distribution may be shaped extremely differenitiy. LogNormal distribution, along with the high sigma delay of

o * a six stage clock path circuit and gain of an Operational
other words, because tii2and H distributions are necessarllyAmp”ﬁer_ The results show the estimated sigma for multiple

two different random variables, the relationship in (16)srlnut e values and are compared to Monte Carlo as ground

be modified to account for the shape mismaich that mh%fﬁth. The Monte Carlo results were generated with roughly

ently arises due to the unknown shape of the dlstrlbutlo%;E6 samples for the Time Critical Path ardbEG samples

Consequently, we propose a dynamic scaling technique }flthe Operational Amplifier. Additionally, we compare the
s

3@?'%02?”3’ brewelghsl_thef prtobablll_lrt_]y und?r thfe tSegm::'n ults to the MAXENT algorithm to show the improvements
istribution by a scaling factors. The scaling factor acts using a piecewise distribution model rather than a global

as a heuristic correction factor that is calculated based QBproach We also compare the results to HDIS to show

tt)heh|nQ|cator funcUgnthof tthtelsubszik 0]; thet entire crllrcwt that the re-weighing portion of PDM is accurate and robust
ehavior space, and the total number of outpugsas shown for high dimensional circuits because it is independent of

n (22). Each approximation OT different,. values _has_ a dimensionality. The independence is due to the re-weighing
dlffer_ent value of beta due to different values of the inthca process occurring in the output domain where there is only
function (21). a single variable. The source code of SUS is also obtained
from its original authors for cross evaluation. Table IIVes
I(wn) {0 if wy < topec an overview of the variables used in each circuit.
k) =

i (21)
1 if Wi > tspec TABLE llI

N3 I( ) PARAMETERS OFMOSFETS
Wy
B = Z N. (22) Variable Name Time Critical Path| OpAmp
k=1 3 Flat-band Voltage i
. . . . . .- Threshold Voltage
Using this scaling factor yields the final probability of a Gate Oxide Thick%ess
specified circuit behaviot,p.. as (23) Mobility
Doping concentration at depletion|
Channel-length offset T
" " Channel-width offset
P(H > tspec) = P(H > tspec|B > t")*P(B > t")x [ (23) Source/drain sheet resistance
) . ) Source-gate overlap unit capacitance i
Fig. 11 shows an example of the difference in shape between [ Drain-gate overlap unit capacitance i

the true tail distribution, the unscaled Segment2 distitiou

and the scaled Segment2 distribution. Additionally, weenot The time critical path circuit has six stages and nine praces
that both Segmentl and Segment2 distributions are guadntparameters per transistor for a total of 54 variables, while
to be stable, i.e. they will have a non-negative probabditd the circuit behavior of interest is the delay from input to
therefore the CDF is guaranteed to be monotonic. This natwtput. Fig. 4 displays a schematic of the two-stage diffeaé
rally arises because both distributions are calculatetgutsie cascode operational amplifier, and is the same circuit as in
maximum entropy method and all moments in both segmeifi§]. The circuit has a total of thirteen transistors and fgain

are monotonically increasing. boosting amplifiers. In total, only ten transistors are tered
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to be independently varied. However, transistors in the gahe points that separates Segmentl and Segment2 is selected
boosting amplifiers are also varied, though due to the nedorto be the 4 sigma point, i.e. whatever circuit behavior that
properties of the circuit they are varied simultaneously are corresponds to a tail probability 6f4F — 5 in the Segmentl
counted as one variation. As such, although each tran$iasr distribution. By introducing the Segment2 distributionthé
seven process parameters resulting in a total of 70 vasablpoint s, PDM is able to avoid any errors that MAXENT
the true number of variables is much higher. In the propossdffers from, allowing PDM to match almost identically with
algorithm, the circuit behavior of interest is the g%ﬁ% the Monte Carlo results up to 4.8 sigma. By utilizing region
specific moments and doing a piecewise approximation of the
distribution, PDM keeps consistently small errors. On ttieep
hand, the MAXENT algorithm begins to lose accuracy and
fails to capture the tail of the distribution because it onbes

B. Experiment on Mathematical Distribution

007 : ; ; ; ; one distribution to model the overall behavior.
oosf . Furthermore, we see that all the high sigma modeling
005 1 methods, HDIS, SUS, and PDM have accuracy comparable
goour 1 to Monte Carlo (with less than 0.1*sigma deviation). We can
goor 1 observe some deviations from Monte Carlo on PDM and SUS,
oo 1 but as statistical algorithms, those deviations are expleghd
oo 1 are within tolerance as they are small and unsystematide Tab
o i 2 s z s D IV shows the error in estimated sigma for PDM. The error is
between -0.25% and 2% all the way to the 4.8 sigma point.
Fig. 12. LogNormal PDF We also note that MAXENT and PDM doot assume the

distributions to be matched are Gaussian distributions s

To illustrate the capability of modeling strongly nonthey do not match only 3 moments. [36] outlines that the
Gaussian distributions, we use PDM to model a LOgNOI‘mﬁ{aximum entropy moment matching method can be forced
distribution. The LogNormaI distribution with mean andrsiaj; to assume a Gaussian distribution if we match exacﬂy 3
parametersy = 0, o = 0.35 was selected because of itsnoments. However, because we sweep through a wide range
strongly non-Gaussian behavior. A plot of the PDF of thisf moments for both MAXENT and PDM, we, in general, will
distribution is presented in Fig. 12. The distribution ase never pick a Gaussian distribution because it does not agree
to be Gaussian for a small portion due to the bell shap@gh the gradient criteria selected by Spearman’s coiielat
curve, but it has a very long tail, giving it the non-Gaussiagpefficient. Consequently, the high error that MAXENT stsfe

properties that are of interest. from is due to its limitation of using one set of moments, not
from any assumptions about its model.
s4r o TABLE IV
o / 1 SIGMA ERROR FORLOGNORMAL

LogNormal Value

5F 4
48r ; ] True Sigma| Estimated Sigma % Error
ol ] 70 2.0786 1.0650%
42 ~

4

—8— Monte Carlo] | 4.2 4.2224 0.5333%
ue// —e— PDM 4.4 4.3886 -0.2591%
)

e ient || 15 45888 | -0.2435%

sus I 4.8 4.8569 1.1854%

I
2 4.4 4.6 4.8 5
Sigma

38 A‘t
Fig. 13. LogNormal Sigma Behavior C. Experiments on Circuits

Fig. 13 shows the high sigma modeling results for Mon
Carlo, PDM, HDIS, MAXENT, and SUS at multiple,,..
points. The figure is the CDF zoomed into the tail area with tt 005y
x-axis as sigma and y-axis as the value of the random variat
precisely circuit behavior. Here sigma is used to represe
probability, i.e.40 ~ 0.000064 in the tail. The motivation for
this type of plot is to best represent the non-linear behravi o0t
of a non-Gaussian PDF. Additionally, it shows only the hig
sigma behavior rather than the overall distribution beedhat
is the motivation and focus behind this algorithm. 05 i 15 5 25

While the number of samples required for SUS ranges frc.., e
5800 to 7400 in the experiment setup, HDIS, MAXENT angig. 14. Clock Path PDE
PDM each used a total of 4000 samples, with PDM using
3000 samples to calculate the Segmentl distribution an@ 100 The Monte Carlo distribution of the time critical path ciicu
samples to calculate the Segment2 distribution. In thig,caslelay is presented in Fig. 14. Because the circuit operates a

Probability
o
=
2
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very low VDD level, it behaves in a slightly non-linear wayestimation error in one phase may accumulate and propagate t
The distribution, while not as long tailed as the LogNormathe next. When the problem scales to higher sigma values, SUS
has a more elongated tail than a Gaussian distribution.  would require an increased number of phases to better cover
the smaller failure region, which may lead to an unwanted
2572, : : : : runtime overhead. On the other hand, a smaller number of
phases results in larger deviation from the MC estimate as
was mentioned above. Compared with SUS, PDM results stay
closer to MC with less than 0.1*sigma deviation.
Furthermore, we see that the results from HDIS are com-

24

231

Delay/s
N
N

il -] pletely inaccurate compared to both Monte Carlo and PDM.
2r / —o—wmxent || HDIS is unable to come anywhere near the proper sigma value
SuUs . . . . . . .
1ol ¢ — T E——— - = - for any of the points that it estimates. This is likely inaxate
sioma from a combination of high dimensionality and an inaccurate
Fig. 15. Clock Path Sigma Behavior shift in the mean and sigma of the new sampling distribution

that causes the re-weighing process to again become inaccu-

Fig. 15 shows the high sigma modeling results for Montete. Simply put, if the shifting method is inaccurate theutts
Carlo, PDM, HDIS, MAXENT, and SUS at multiple,,.. from HDIS will be inaccurate. If a larger number of samples
points. HDIS, MAXENT and PDM each used a total ofs used, then the shift and corresponding samples drawn from
4000 samples, with PDM using 3000 samples to calculatee new distribution will be more accurate; however, due to
the Segmentl distribution and 1000 samples to calculate the run time prohibitive nature of high dimensional cirsyit
Segment2 distribution. Once again in PDM, the pain$ the is imperative to minimize the number of samples. On the other
4 sigma point from the Segmentl distribution. By introdgcinhand, the shifting method in PDM is more robust because the
the Segment2 distribution at the poirf PDM is able to re-weighing process is performed in the output domain and is
avoid any errors that MAXENT may suffer from. This is mosperformed using conditional probability rather than astéora
apparent at the 4.4 sigma point and beyond. Additionallgf two distributions. Table V shows the error in sigma betwee
PDM is able to capture the increase in slope as the circ®DM and the ground truth from Monte Carlo. We see a worst
approaches higher sigma. On the other hand, MAXENT is alilase error of 2.7% at 4 sigma but significantly less errors at
to perform somewhat well up to 4.2 sigma but then blows uggher sigma values.
and becomes completely inaccurate afterwards. The signtfic
increase in accuracy with PDM is, again, due to matchir o0
region specific moments that allow piecewise approximaifon
the distribution. Because MAXENT uses a single distribaitio
to make a global approximation it is unable to capture the t:
of the distribution and instead models the high sigma poir
purely as noise. We again note that MAXENT does not assut
the distribution is a Gaussian model, so its error is due
limitations of using one set of moments to model the tot: 3 5 1000 5500 2000 = 000
distribution which PDM does not suffer from. «

SUS uses between 5803 and 9010 samples for differeqf 16. op. Amp PDF
sigma points, which is slightly less efficient compared tdWPD
(4000 samples). In terms of accuracy, the probability estitth ~ The Monte Carlo distribution of the Operational Amplifier
by SUS follows the same trend of MC and PDM, i.e., the cunarcuit gain is shown in Fig. 16. The distribution is heavily
from SUS is almost parallel to the curves of MC and PDM askewed and has a very sharp peak near the beginning and
illustrated in Fig. 15. However, if we compare the probaypili proceeds to drop very quickly, However, it also has a shghtl
estimated by PDM and SUS in Fig. 15 in detail, we can finfliatter portion that eventually decreases to a long, flatoregi
that at lower threshold (1.98ns), SUS has the smallest tiewia of the tail. It clearly has a long tail and behaves in a strgngl
(about 0.04*sigma at 4 sigma) from MC. As we move towardson-Gaussian way.
higher thresholds, and thus allow less failure samples, mek fi Fig. 17 shows the high sigma modeling results for Monte
that the deviation between the estimated probability of M@ a Carlo, MAXENT, and PDM at multiplet,.. points. The
SUS grows constantly, i.e. 0.13-0.15*sigma at 4.2-4.6 signfigure shows only the high sigma behavior rather than the
and finally 0.29*sigma difference at 4.8 sigma. SUS does noterall distribution because that is the motivation andufoc
experience such notable estimation error on the 1-dimaakiobehind this algorithm. Both MAXENT and PDM used a total
lognormal distribution. However, at high dimensions, skap of 3000 samples, with PDM using 2000 samples to calculate
generated by only a few Markov chains could be insufficiethe Segmentl distribution and 1000 samples to calculate the
to cover the entire failure region(s), leading to large dégn Segment2 distribution. In the case of the OpAmp, the point
compared with MC. Moreover, as samples in each phasavas determined to be the 3.6 sigma point rather than the 4
of SUS are generated with a modified Metropolis (MM§¥igma point as in the previous cases due to the extremely long
algorithm using the previously failed samples as the sded, tailed nature of the distribution. Before the pointit's clear

Probability
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2000 : . ‘ : D. Speedup Comparison
ZZ: o n ] To analyze the efficiency of the proposed method, we com-
ol / | pare the number of samples required by PDM to the number of
£ ool | samples used for Monte Carlo. Since the LogNormal distribu-
® ool ' | tion is a mathematically known circuit and requires no Monte
200} / ==l Carlo simulations, we exclude that speedup comparison. In
23001 —o—AXeNT the clock path circuit, PDM requires a total of 4000 samples -
2200 35 . a5 5 3000 samples for the body distribution and 1000 for the taybri
some distribution. In the Operational Amplifier, PDM requiresoazi
Fig. 17. Op Amp Sigma Behavior of 3000 samples - 2000 samples for the Segmentl distribution

and 1000 for the Segment2 distribution. Table VI compares th
Monte Carlo and PDM runtime requirements and the speedup

that PDM has a larger error (roughly 5%) than in previo€" all circuit examples. We note that the speedup of the
cases. However, when we introduce the Segment2 distriputi@!9°rithm compared to Monte Carlo will vary based on the
PDM is able to immediately recover and match the 3.8 sigridmber of samples that are used; however, it is clear that PDM

point closely and continues to match larger sigma points aRgers & significant speedup at very little loss in accuracy.
the overall shape of the Monte Carlo curve very well. By

introducing this second “piece” to model the distributiove TABLE VI

L . . SPEEDUPCOMPARISON
are able to get a significant increase in accuracy. On the othe
hand, the MAXENT method has a large error, blows up and Circuit Mgntet_carlo RPDtM Speedu]
returns noise values because it is unable to capture theftail ToeK P —B.000.000 400030005
the distribution as it does not use moments that are specific Op. Amp.| 2,500,000 | 3000 | 833z

to that region. We again note that MAXENT does not assume
the distribution is a Gaussian model because it matches more
than 3 moments. Hence, its error is due to limitations ofgisin V1. CONCLUSION

one set of moments to model the total distribution. In this paper, we presented two novel algorithms for sta-
The SUS algorithm used between 5004 and 8216 sampigsical performance modeling of circuits. The first alglom
at different sigma points. While SUS is able to capture thgas based on the maximum entropy moment matching method
overall trend and shape of the Monte Carlo results, the sigWhich was originally proposed in the communications and
estimated by SUS is pessimistic with respect to Monte Cardgynal processing field. The MAXENT algorithm is provably
and tends to slightly overestimate the true sigma valueh wistable under general statistical circuit analysis methé&ds
small pessimism at lower sigmas (3.7 vs 3.6) and highgérimental results indicate that it offers high accuracy an
pessimism at larger sigmas (5.1 vs 4.8). The results obderégability when compared to other moment matching methods
on this circuit are similar to those on the clock path circuif1], [3]. However, MAXENT is unable to accurately model the
indicating a growing deviation between MC at higher sigmagigh sigma behavior of non-Gaussian circuits and is theeefo
We see that the results from HDIS are inaccurate and wnsuitable for yield analysis. To this end, we proposed PDM
one point has a huge jump in its results and is simply noisya piecewise distribution model that performs region based
throughout. Although the Operational Amplifier circuit istn moment matching to extract the PDF of circuit performance.
as high dimensional as the Clock Path, HDIS is still unable #DM is provably stable because it is based on the maximum
properly model the high sigma region. Again, the inaccuragntropy method. Furthermore, it is able to model the high
is most likely from an inaccurate shift in the mean and signsigma regions of the circuit performance PDF. In partigular
of the new sampling distribution that causes the re-weighinwve introduced a second distribution based on a set of moments
process to again become inaccurate. Table V shows the ettt are accurate in the tail of the PDF leads to significantly
in estimated sigma between PDM and the ground truth froimproved accuracy over MAXENT [26] with little error com-
Monte Carlo. We see very accurate results with a worst casared to Monte Carlo.
error of about -1% at 4.2 sigma. We demonstrated that PDM performs as well or better
than other state-of-the-art statistical modeling metthagies
[26], [17], [25]. The importance sampling technique in [15]

- EFEOBFL-EOVRCIRCWS inaccurate for high-dimensional circuits due to the “ctoée
dimensionality” [21] from the re-weighing procedure appli
Time Critical Path Op Amp to every input parameter that is shifted. While PDM employs
True | Estimated| % Error| True | Estimated % Error imilar i hifti . iahi i
Sigma| Sigma Sigma| Sigma a similar input parameter shifting, its re-weighing proeslis
j-g j-;g;; igggz//o 3-2 3-2(53‘113 %%37;%%/0 performed only in th@utputdomain which is one-dimensional
AT 080 T8t 42386 087737 a_nd _thus avoids issues with the de_g_eneration ar_1d unbounded
4.6 | 45793 |-0.450%| 46 | 4.6329 | 0.7152% distribution support. Consequently, it is able to efficigtan-
7.8 | 48517 | 1.077%| 4.8 | 4.7662 | -0.7042%

dle high-dimensional cases without instability. Final§QJS
offers higher accuracy than both MAXENT and Importance



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATEDIRCUITS AND SYSTEMS

13

Sampling, especially in the lower-dimensional experiraenfi14] L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan, “Rireg the
The estimates from SUS match the general trend of those
from MC and PDM, and often provides the very high accuracy
at lower sigma values. However, at higher sigma values SiS]
suffers from some inaccuracy on both high dimensional dircu
examples, on which the failure regions are difficult to captu
with only a few Markov chains. Furthermore, because SUS

generates samples in each phase using the previously falfédi
samples as the seed, estimation errors in one phase may
accumulate to the latter phases.

[17]

In the future, we plan to develop a weighted moment

matching based approach that allows us to pick and choose the

important moments of a distribution. The motivation behings)
this is not all moments are important to the distributiog, &

a Gaussian distribution only even order moments are nom-zer
and therefore applying more weight to “important” momentso)
may help improve accuracy and reduce noise.
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